DOI QR코드

DOI QR Code

Safety Assessment of Corrosion-damaged Steel Structure using Imprecise Reliability

불확실 신뢰도 기법을 이용한 부식된 강구조물의 안전도평가

  • 최현호 (한양대학교 공과대학 토목환경공학과 BK연구) ;
  • 조효남 (한양대학교 공학대학 토목환경공학과) ;
  • 서종원 (한양대학교 공과대학 토목공학과) ;
  • 선종완 (한양대학교 공학대학 토목환경공학과)
  • Received : 2005.02.25
  • Accepted : 2006.01.16
  • Published : 2006.03.30

Abstract

There is a high degree of uncertainty in measurements of the thickness or the loss of thickness of corroded elements. Generally the thickness of corroded elements varies from one location of the element to another depending on the degree of corrosion, which makes the safety assessment difficult. Therefore, a procedure for safety assessment of corrosion- damaged steel structures using an imprecise reliability is proposed in this paper. The proposed safety assessment procedure using the imprecise reliability was also applied to a cable-stayed bridge in Korea to demonstrate its effectiveness and applicability. Since there is a large variation in measurements of the thickness of corroded elements, the thickness of corroded elements was considered as the imprecise element. This variation was found to be directly related to the degree of corrosion. Therefore, the variation increases as the degree of corrosion increases. Based on the comparative observations between the conventional reliability and the imprecise reliability, it is suggested that the imprecise reliability analysis derived based on the subjective or statistical judgment of conditional independence could be successfully utilized for the risk or safety assessment of corrosion-damaged structures.

일반적으로 부식된 부재의 두께를 측정하는 데는 많은 불확실성이 존재하며, 부식의 진행정도에 따라 부재의 부식 두께는 측정 위치마다 다르므로, 기존의 신뢰성 해석 방법을 사용하여 모든 불확실성을 고려한 정량적인 안전도를 평가하는 것은 실질적으로 불가능하다. 따라서 본 논문에서는 불확실 신뢰도 기법을 적용한 안전도 분석 절차를 제안하였으며, 효율성과 적용성을 검토하기 위하여 국내 공용중인 사장교에 적용하였다. 심하게 부식된 부재의 잔존 두께의 불확실성은 부식이 진행되는 정도에 따라 증가하므로 부재의 부식 두께를 불확실 정도로 표현되는 불확실 구간으로 표현하였으며, 기존의 신뢰성 기법과 불확실 신뢰도 기법의 비교를 수행하였다. 이러한 불확실 신뢰도 기법은 주관적이거나 조건부 독립에 대한 통계적 판단을 이용하여, 부식된 구조물의 안전도 평가나 위험도 평가를 하는 경우에 유용하여 적용할 수 있을 것으로 판단된다.

Keywords

References

  1. 건설교통부( 1996) 도로교표준시방서 하중저항계수설계편
  2. 조효남, 임종권, 박경훈(1998) 체계신뢰성방법에 기초한 강사장교의 안전도평가, 한국전산구조공학회 논문집, 한국전산구조공학회 , 제 11권 4호, pp.351-360
  3. 최현호(2004) 퍼지 및 불확실 신뢰도를 이용한 대형토목구조물의 위험도 및 안전도 분석방법, 박사학위논문, 한양대학교
  4. Ang, A. H-S. and Tang, W.H. (1984) Probabilistic concepts in engineering planning and design: Vol. 1 & 2, John Wiley & Sons Inc., New York
  5. Bruneau, M. (1992) Evaluation of System-Reliability Methods for Cable-Stayed Bridge Design, Jour. of Structural Engineering, ASCE, Vol. 118, No.4, pp. 1106-1120 https://doi.org/10.1061/(ASCE)0733-9445(1992)118:4(1106)
  6. Cho, H.N. and Ang, A. H-S. (1989) Reliability Assessment and Reliability-Based Rating of Existing Road Bridges, 5th International Conference on Structural Safety and Reliability (ICOSSAR '89), San Francisco, Calif., USA, pp. 2235-2238
  7. Cho, H.N., Lim, J.K., and Park, K.H. (1997) System reliability and system reliability-based carrying capacity evaluation of long span bridges, Proc. 7th International Conference on Structural Safety and Reliability (ICOSSAR'97), pp. 1927-1934
  8. Coolen, F.P.A. and Newby, M.J. (1994) Bayesian reliability analysis with imprecise prior probability, Reliability Engineering and System Safety, 43, pp. 75-85 https://doi.org/10.1016/0951-8320(94)90096-5
  9. Coolen F.P.A. (1997) An imprecise Dirichlet model for Bayesian analysis of failure data including right-censored observations, Reliability Engineering and System Safety, 56, pp. 61-68 https://doi.org/10.1016/S0951-8320(96)00131-7
  10. Kozine, I.O. and Filimonov, Y.V. (2000) Imprecise: experiences and advances, Reliability Engineering & System Safety, Vol 67, pp 75-83 https://doi.org/10.1016/S0951-8320(99)00044-7
  11. JCSS (2001) Probabilistic Model Code, The Joint Committee on Structural Safety
  12. Kuznetsov, VP. (1991) Interval statistical models, Moscow: Radio and Communications
  13. Utkin, Lev V. (2003) A second-order uncertainty model for calculation of the interval system reliability, Reliability Engineering & System Safety 79, pp. 341-351 https://doi.org/10.1016/S0951-8320(02)00242-9
  14. Utkin, Lev V. and Gurov, Sergey V. (2003) Imprecise reliability for some new lifetime distribution classes, Journal of statistical planning and inference 105, pp. 215-232 https://doi.org/10.1016/S0378-3758(01)00211-7
  15. Ministry of Construction and Traffic (1996) The Korea Design Bridge Code (KBDC)
  16. Sarveswaran, V., Smith and J.W., and Blockley, D.I. (1998) Reliability of corrosion-damaged steel structures using interval probability theory, Structural Safety, 20, pp. 237-255 https://doi.org/10.1016/S0167-4730(98)00009-5
  17. Tabsh, S.W. and Nowak, A.S. (1991) Reliability of Highway Girder Bridge, Joural of Structural Engineering, ASCE, Vol. 117, No.8, pp. 2372-2388 https://doi.org/10.1061/(ASCE)0733-9445(1991)117:8(2372)
  18. Walley P. (1991) Statistical reasoning with imprecise probabilities, London: Chapman and Hall