Analysis of Poly(3-Hydroxybutyrate) Granule-Associated Proteome in Recombinant Escherichia coli

  • Han Mee-Jung (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering, BioProcess Engineering Research Center, and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology) ;
  • Park Si-Jae (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering, BioProcess Engineering Research Center, and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology) ;
  • Lee Jeong-Wook (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering, BioProcess Engineering Research Center, and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology) ;
  • Min Byoung-Hoon (Cell Biology Laboratory, Department of Biology, Hallym University) ;
  • Lee Sang-Yup (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering, BioProcess Engineering Research Center, and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology) ;
  • Kim Soo-Jin (Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical & Biomolecular Engineering, BioProcess Engineering Research Center, and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology) ;
  • Yoo Jong-Shin (Korea Basic Science Institute)
  • 발행 : 2006.06.01

초록

Poly(3-hydroxybutyrate) [P(3HB)] is a microbial polyester intracellularly accumulated as distinct granules in numerous microorganisms as an energy and carbon storage material. Recombinant Escherichia coli harboring the heterologous P(3HB) biosynthesis genes accumulates large amounts of P(3HB) granules, yet the granule-associated proteins have not been identified. Therefore, this study reports on an analysis of the P(3HB) granule-associated proteome in recombinant E. coli. Fiye proteins out of 7 spots identified were found to be involved in functions of translation, heat-stress responses, and P(3HB) biosynthesis. Two of the major granule-associated proteins, IbpA/B, which are already known to bind to recombinant proteins forming inclusion bodies in E. coli, were further analyzed. Immunoblotting and immunoelectron microscopic studies with IbpA/B antibodies clearly demonstrated the binding and localization of IbpA/B to P(3HB) granules. IbpA/B seemed to play an important role in recombinant E. coli producing P(3HB) by stabilizing the interface between the hydrophobic P(3HB) granules and the hydrophilic cytoplasm. Thus, IbpA/B were found to act like phasins in recombinant E. coli, as they are the major proteins bound to the P(3HB) granules, affect the morphology of the granules, and reduce the amount of cytosolic proteins bound to the P(3HB) granules.

키워드

참고문헌

  1. Allen, S. P., J. O. Polazzi, J. K. Gierse, and A. M. Easton. 1992. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J. Bacteriol. 174: 6938-6947 https://doi.org/10.1128/jb.174.21.6938-6947.1992
  2. Basha, E., G. J. Lee, L. A. Breci, A. C. Hausrath, N. R. Buan, K. C. Giese, and E. Vierling. 2004. The identity of proteins associated with a small heat shock protein during heat stress in vivo indicates that these chaperones protect a wide range of cellular functions. J. Biol. Chem. 279: 7566-7575 https://doi.org/10.1074/jbc.M310684200
  3. Bova, M. P., H. S. McHaourab, Y. Han, and B. K. Fung. 2000. Subunit exchange of small heat shock proteins. Analysis of oligomer formation of alphaA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J. Biol. Chem. 275: 1035-1042 https://doi.org/10.1074/jbc.275.2.1035
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Braunegg, G., B. Sonnleitner, and R. M. Lafferty. 1978. A rapid gas chromatographic method for the determination of poly-${\beta}$-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6: 29-37 https://doi.org/10.1007/BF00500854
  6. Bruey, J. M., C. Ducasse, P. Bonniaud, L. Ravagnan, S. A. Susin, C. Diaz-Latoud, S. Gurbuxani, A. P. Arrigo, G. Kroemer, E. Solary, and C. Garrido. 2000. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat. Cell Biol. 2: 645-652 https://doi.org/10.1038/35023595
  7. Choi, J., S. Y. Lee, and K. B. Han. 1998. Cloning of the Alcaligenes latus polyhydroxyalkanoates biosynthesis genes and use of these genes for enhanced production of poly(3-hydroxybutyrate) in Escherichia coli. Appl. Environ. Microbiol. 64: 4897-4903
  8. Choi, J., S. Y. Lee, K. Shin, W. G. Lee, S. J. Park, H. N. Chang, and Y. K. Chang. 2002. Pilot scale production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. Biotechnol. Bioprocess Eng. 7: 371-374 https://doi.org/10.1007/BF02933524
  9. Ehrnsperger, M., S. Graber, M. Gaestel, and J. Buchner. 1997. Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J. 16: 221-229 https://doi.org/10.1093/emboj/16.2.221
  10. Fukui, T., T. Kichise, T. Iwata, and Y. Doi. 2001. Characterization of 13 kDa granule-associated protein in Aeromonas caviae and biosynthesis of polyhydroxyalkanoates with altered molar composition by recombinant bacteria Biomacromolecules 2: 148-153 https://doi.org/10.1021/bm0056052
  11. Griebel, R., Z. Smith, and J. M. Merrick. 1968. Metabolism of poly-beta-hydroxybutyrate. I. Purification, composition, and properties of native poly-beta-hydroxybutyrate granules from Bacillus megaterium. Biochemistry 7: 3676-3681 https://doi.org/10.1021/bi00850a047
  12. Han, M.-J., K. J. Jeong, J.-S. Yoo, and S. Y. Lee. 2003. Engineering Escherichia coli for increased productivity of serine-rich proteins based on proteome profiling. Appl. Environ. Microbiol. 69: 5772-5781 https://doi.org/10.1128/AEM.69.10.5772-5781.2003
  13. Han, M.-J., S. S. Yoon, and S. Y. Lee. 2001. Proteome analysis of metabolically engineered Escherichia coli producing poly(3-hydroxybutyrate). J. Bacteriol. 183: 301-308 https://doi.org/10.1128/JB.183.1.301-308.2001
  14. Han, M.-J., S. J. Park, T. J. Park, and S. Y. Lee. 2004. Roles and applications of small heat shock proteins in the production of recombinant proteins in Escherichia coli. Biotechnol. Bioeng. 88: 426-436 https://doi.org/10.1002/bit.20227
  15. Hart, R. A., U. Rinas, and J. E. Bailey. 1990. Protein composition of Vitreoscilla hemoglobin inclusion bodies produced in Escherichia coli. J. Biol. Chem. 265: 12728-12733
  16. Huber, L. A., K. Pfaller, and I. Vietor. 2003. Organelle proteomics: Implications for subcellular fractionation in proteomics. Circ. Res. 92: 962-968 https://doi.org/10.1161/01.RES.0000071748.48338.25
  17. Inagawa, Y., Y. Inoue, M. Shiraki, and T. Saito. 2002. Identification and characterization of poly-3-hydroxybutyrate granule-associated protein, PGA12 and PGA16 in Zoogloea ramigera I-16-M. Int. J. Biol. Macromol. 30: 55-61 https://doi.org/10.1016/S0141-8130(02)00003-X
  18. Jeong, K. J. and S. Y. Lee. 2002. Excretory production of human ${\beta}$-endorphin into culture medium by using outer membrane protein F as a fusion partner in recombinant Escherichia coli. Appl. Environ. Microbiol. 68: 4979-4985 https://doi.org/10.1128/AEM.68.10.4979-4985.2002
  19. Jurgen, B., H. Y. Lin, S. Riemschneider, C. Scharf, P. Neubauer, R. Schmid, M. Hecker, and T. Schweder. 2000. Monitoring of genes that respond to overproduction of an insoluble recombinant protein in Escherichia coli glucoselimited fed-batch fermentations. Biotechnol. Bioeng. 70: 217-224 https://doi.org/10.1002/1097-0290(20001020)70:2<217::AID-BIT11>3.0.CO;2-W
  20. Kim, K. K., R. Kim, and S. H. Kim. 1998. Crystal structure of a small heat-shock protein. Nature 394: 595-599 https://doi.org/10.1038/29106
  21. Kim, T.-K., M. T. Vo, H.-D. Shin, and Y.-H. Lee. 2005. Molecular structure of the PHA synthesis gene cluster from new mcl-PHA producer Pseudomonas putida KCTC1639. J. Microbiol. Biotechnol. 15: 1120-1124
  22. Kitagawa, M., M. Miyakawa, Y. Matsumura, and T. Tsuchido. 2002. Escherichia coli small heat shock proteins, IbpA and IbpB, protect enzymes from inactivation by heat and oxidants. Eur. J. Biochem. 269: 2907-2917 https://doi.org/10.1046/j.1432-1033.2002.02958.x
  23. Kucharczyk, K., E. Laskowska, and A. Taylor. 1991. Response of Escherichia coli cell membranes to induction of lambda cl857 prophage by heat shock. Mol. Microbiol. 5: 2935-2945 https://doi.org/10.1111/j.1365-2958.1991.tb01853.x
  24. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  25. Laskowska, E., A. Wawrzynow, and A. Taylor. 1996. IbpA and IbpB, the new heat-shock proteins, bind to endogenous Escherichia coli proteins aggregated intracellularly by heat shock. Biochimie 78: 117-122 https://doi.org/10.1016/0300-9084(96)82643-5
  26. Lee, G. J., A. M. Roseman, H. R. Saibil, and E. Vierling. 1997. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a foldingcompetent state. EMBO J. 16: 659-671 https://doi.org/10.1093/emboj/16.3.659
  27. Lee, S. Y. 1996. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49: 1-14 https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P
  28. Leroux, M. R., R. Melki, B. Gordon, G. Batelier, and E. P. Candido. 1997. Structure-function studies on small heat shock protein oligomeric assembly and interaction with unfolded polypeptides. J. Biol. Chem. 272: 24646-24656 https://doi.org/10.1074/jbc.272.39.24646
  29. Liebergesell, M., K. Sonomoto, M. Madkour, F. Mayer, and A. Steinbüchel. 1994. Purification and characterization of the poly(hydroxyalkanoic acid) synthase from Chromatium vinosum and localization of the enzyme at the surface of poly(hydroxyalkanoic acid) granules. Eur. J. Biochem. 226: 71-80 https://doi.org/10.1111/j.1432-1033.1994.tb20027.x
  30. Madison, L. L. and G. W. Huisman. 1999. Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21-53
  31. Maehara, A., S. Ueda, H. Nakano, and T. Yamane. 1999. Analyses of a polyhydroxyalkanoic acid granule-associated 16-kilodalton protein and its putative regulator in the pha locus of Paracoccus denitrificans. J. Bacteriol. 181: 2914-2921
  32. Matsumoto, K., H. Matsusaki, K. Taguchi, M. Seki, and Y. Doi. 2002. Isolation and characterization of polyhydroxyalkanoates inclusions and their associated proteins in Pseudomonas sp. 61-3. Biomacromolecules 3: 787-792 https://doi.org/10.1021/bm025516k
  33. Mergulhao, F. J. M., G. A. Monteiro, J. M. S. Cabral, and M. A. Taipa. 2004. Design of bacterial vector systems for the production of recombinant proteins in Escherichia coli. J. Microbiol. Biotechnol. 14: 1-14 https://doi.org/10.1159/000076921
  34. McCool, G. J. and M. C. Cannon. 1999. Polyhydroxyalkanoate inclusion body-associated proteins and coding region in Bacillus megaterium. J. Bacteriol. 181: 585-592
  35. Nam, I.-Y., H. Myung, and K. Joh. 2004. Molecular cloning, purification, and characterization of an extracellular nuclease from Aeromonas hydrophila ATCC14715. J. Microbiol. Biotechnol. 14: 178-181
  36. Park, S. J., J.-I. Choi, and S. Y. Lee. 2005. Short-chainlength polyhydroxyalkanoates: Synthesis in metabolically engineered Escherichia coli and medical applications. J. Microbiol. Biotechnol. 15: 206-215
  37. Pieper-Furst, U., M. H. Madkour, F. Mayer, and A. Steinbuchel. 1994. Purification and characterization of a 14- kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules in Rhodococcus ruber. J. Bacteriol. 176: 4328-4337 https://doi.org/10.1128/jb.176.14.4328-4337.1994
  38. Pieper-Furst, U., M. H. Madkour, F. Mayer, and A. Steinbuchel. 1995. Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules. J. Bacteriol. 177: 2513-2523 https://doi.org/10.1128/jb.177.9.2513-2523.1995
  39. Potter, M., H. Muller, F. Reinecke, R. Wieczorek, F. Fricke, B. Bowien, B. Friedrich, and A Steinbuchel. 2004. The complex structure of polyhydroxybutyrate (PHB) granules: Four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiology 150: 2301-2311 https://doi.org/10.1099/mic.0.26970-0
  40. Potter, M., M. H. Madkour, F. Mayer, and A. Steinbuchel. 2002. Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology 148: 2413-2426 https://doi.org/10.1099/00221287-148-8-2413
  41. Prieto, M. A., B. Buhler, K. Jung, B. Witholt, and B. Kessler. 1999. PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. J. Bacteriol. 181: 858-868
  42. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. U.S.A
  43. Schembri, M. A., A. A. Woods, R. C. Bayly, and J. K. Davies. 1995. Identification of a 13-kDa protein associated with the polyhydroxyalkanoic acid granules from Acinetobacter spp. FEMS Microbiol. Lett. 133: 277-283 https://doi.org/10.1111/j.1574-6968.1995.tb07897.x
  44. Shearstone, J. R. and F. Baneyx. 1999. Biochemical characterization of the small heat shock protein IbpB from Escherichia coli. J. Biol. Chem. 274: 9937-9945 https://doi.org/10.1074/jbc.274.15.9937
  45. Steinbuchel, A. and B. Fuchtenbusch. 1998. Bacterial and other biological systems for polyester production. Trends Biotechnol. 16: 419-427 https://doi.org/10.1016/S0167-7799(98)01194-9
  46. Steinbuchel, A., E. Hustede, M. Liebergesell, U. Pieper, A. Timm, and H. Valentin. 1992. Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. FEMS Microbiol. Rev. 9: 217-230
  47. Steinbuchel, A., K. Aerts, W. Babel, C. Follner, M. Liebergesell, M. K. Madkour, F. Mayer, U. Pieper-Furst, A. Pries, and H. E. Valentin. 1995. Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions. Can. J. Microbiol. 41: 94-105 https://doi.org/10.1139/m95-175
  48. Studer, S. and F. Narberhaus. 2000. Chaperone activity and homo- and hetero-oligomer formation of bacterial small heat shock proteins. J. Biol. Chem. 275: 37212-37218 https://doi.org/10.1074/jbc.M004701200
  49. Sugiyama, Y., A. Suzuki, M. Kishikawa, R. Akutsu, T. Hirose, M. M. Waye, S. K. Tsui, S. Yoshida, and S. Ohno. 2000. Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. J. Biol. Chem. 275: 1095-1104 https://doi.org/10.1074/jbc.275.2.1095
  50. Switzer, R. C., C. R. Merril, and S. Shifrin. 1979. A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal. Biochem. 98: 231-237 https://doi.org/10.1016/0003-2697(79)90732-2
  51. Taylor, S. W., E. Fahy, and S. S. Ghosh. 2003. Global organellar proteomics. Trends Biotechnol. 21: 82-88 https://doi.org/10.1016/S0167-7799(02)00037-9
  52. Veinger, L., S. Diamant, J. Buchner, and P. Goloubinoff. 1998. The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273: 11032-11037 https://doi.org/10.1074/jbc.273.18.11032
  53. Wang, F. and S. Y. Lee. 1997. Production of poly(3-hydroxybutyrate) by fed-batch culture of filamentation-suppressed recombinant Escherichia coli. Appl. Environ. Microbiol. 63: 4756-4769
  54. Wieczorek, R., A. Pries, A. Steinbüchel, and F. Mayer. 1995. Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J. Bacteriol. 177: 2425-2435 https://doi.org/10.1128/jb.177.9.2425-2435.1995