Characterization of Extended Spectrum $\beta$-Lactamase Genotype TEM, SHV, and CTX-M Producing Klebsiella pneumoniae Isolated from Clinical Specimens in Korea

  • Kim Yun-Tae (Department of Microbiology, College of Natural Science, Pusan National University) ;
  • Kim Tae-Un (Department of Clinical Laboratory Science, College of Health Sciences, Catholic University of Pusan) ;
  • Baik Hyung-Suk (Department of Microbiology, College of Natural Science, Pusan National University)
  • Published : 2006.06.01

Abstract

To investigate the antibiotic-resistant patterns and the gene types of extended-spectrum $\beta$-lactamase (ESBL)-producing Klebsiella pneumoniae, we collected 226 Klebsiella pneumoniae strains from three general hospitals with more than 500 beds in Busan, Korea from September 2004 to October 2005, The minimum inhibitory concentration (MIC) of antibiotics was measured using the Gram-negative susceptibility (GNS) cards of Vitek (Vitek system, Hazelwood Inc., MO, U.S.A.). Of the 226 K, pneumoniae isolates, 65 ESBL-producing K. pneumoniae strains were detected by the Vitek system and confirmed by the double-disk synergy test. TEM (Temoniera) type, SHV (sulfhydryl variable) type, and CTX-M (cefotaxime) type genes were detected by polymerase chain reaction. All 65 K. pneumoniae strains were resistant to ampicillin, cefazolin, cefepime, ceftriaxone, and aztreonam, and 83.0% of the organisms were resistant to ampicillin/sulbactam, 66.1% to tobramycin, 67.6% to piperacillin/tazobactam, 61.5% to ciprofloxacin, and 47.6% to trimethoprim/sulfamethoxazole, and 43.0% to gentamicin. TEM-type ESBLs (TEM-1 type, -52 type) were found in 64.6% (42 of 65) of the isolates, SHV-type ESBLs (SHV-2a type, -12 type, -28 type) in 70.7% (46 of 65) of isolates, and CTX-M-type ESBLS (CTX-M-15 type) in 45% (29 of 65) of isolates. Of the 65 ESBL-producing K. pneumoniae strains, two strains were found to harbor blaSHV-28, which were detected in Korea for the first time. Therefore, more investigation and research on SHV-28 are needed in order to prevent the ESBL type-producing K. pneumoniae from spreading resistance to oxyimino cephalosporin antibiotics.

Keywords

References

  1. Abbott, S. 1999. Manual of Clinical Microbiology, pp. 475-482. 7th Ed. American Society for Microbiology, Washington, U.S.A
  2. Ambler, R. P., A. F. W. Coulson, J.-M. Frere, J.-M. Ghuysen, B. Joris, M. Forsman, R. C. Levesque, G. Tiraby, and S. G. Walley. 1991. A standard numbering scheme for the class A ${\beta}$-lactamases. Biochem. J. 276: 269-272 https://doi.org/10.1042/bj2760269
  3. Arlet, G. M., M. Rouveau, I. Casin, J. M. Bouveau, P. H. Lagrange, and A. Philippon. 1994. Molecular epidemiology of Klebsiella pneumoniae strains that produce SHV-4 lactamase and which were isolated in 14 French hospitals. J. Clin. Microbiol. 32: 2553-2558
  4. Bae, H. J., J. M. Kim, Y. M. Kwon, K. W. Lee, Y. S. Chong, E. C. Kim, S. G. Hong, S. J. Kim, S. H. Jeong, C. H. Chang, S. R. Cho, J. Y. Ahn, J. H. Shin, H. S. Lee, W. K. Song, Y. Uh, J. H. Yum, and D. E. Wong. 1997. Characterization and type of extended-spectrum ${\beta}$-lactamase producing Klebsiella pneumoniae isolated in Korea. Infection 29: 93-103 https://doi.org/10.1007/s15010-001-0090-5
  5. Bae, I. K., G. J. Woo, S. H. Jeong, K. O. Park, B. K. Cho, D. M. Kim, S. B. Kwon, H. J. Kim, and H. K. Kang. 2004. Prevalence of CTX-M-type extended-spectrum ${\beta}$-lactamaseproducing Escherichia coli and Klebsiella pneumoniae isolates in Korea. Korean J. Clin. Microbiol. 7: 48-54
  6. Bauernfeind, A., I. Stemplinger, R. Jungwrirth, S. Ernst, and J. M. Casellas. 1996. Sequences of beta-lactamase genes encoding CTX-M-1 (MEN-1) and CTX-M-2 and relationship of their amino acid sequences with those of other beta-lactamases. Antimicrob. Agents Chemother. 40: 509-513
  7. Bonnet, R. 2004. Growing group of extended-spectrumlactamases: The CTX-M enzymes. Antimicrob. Agents Chemother. 48: 1-14 https://doi.org/10.1128/AAC.48.1.1-14.2004
  8. Bradford, P. A. 2001. Extended-spectrum ${\beta}$-lactamases in the 21st century: Characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14: 933-951 https://doi.org/10.1128/CMR.14.4.933-951.2001
  9. Branger, C., A. L. Lesimple, B. Bruneu, P. Berry, and Z. Lambert. 1998. Long-term investigation of the clonal dissemination of Klebsiella pneumoniae isolates producing extended-spectrum ${\beta}$-lactamases in a university hospital. J. Med. Microbiol. 47: 201-209 https://doi.org/10.1099/00222615-47-3-201
  10. Bush, K. 1989. Characterization of ${\beta}$-lactamases. Antimicrob. Agents Chemother. 33: 259 https://doi.org/10.1128/AAC.33.3.259
  11. Bush, K., G. A. Jacoby, and A. A. Medeiros. 1995. A functional classification scheme for ${\beta}$-lactamases and its correlation with molecular structures. Antimicrob. Agents Chemother. 39: 1211-1233 https://doi.org/10.1128/AAC.39.6.1211
  12. Bush, K. and G. Jacoby. 1997. Nomenclature of TEM ${\beta}$-lactamases. J. Antimicrob. Chemother. 39: 1-3 https://doi.org/10.1093/jac/39.1.1
  13. Cho, E. H. and N. Y. Lee. 2003. Antibiogram of Escherichia coli and Klebsiella spp. detected by Vitek ESBL test. Korea J. Clin. Microbiol. 6: 47-51
  14. David, L., L. Paterson, M. Kristine, M. Hujer, Y. Bethany, D. Michael, and D. Bonomo. 2003. Extended-spectrum-${\beta}$-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: Dominance and widespread prevalence of SHV- and CTX-M-type-${\beta}$-lactamases. Antimicrob. Agents Chemother. 34: 3554-3560
  15. Du Bois, S. K., M. S. Marriott, and S. G. B. Amyes. 1995. TEM- and SHV-derived extended spectrum ${\beta}$-lactamases: Relationship between selection, structure, and function. J. Antimicrob. Chemother. 35: 7-22 https://doi.org/10.1093/jac/35.1.7
  16. Heritage, J. P., M. Hawkey, N. I. Todd, and J. Lewis. 1992. Transposition of the gene encoding a TEM-12 extendedspectrum lactamase. Antimicrob. Agents Chemother. 36: 1981-1986 https://doi.org/10.1128/AAC.36.9.1981
  17. Hong, S. G., S. J. Kim, S. H. Jeong, C. H. Chang, S. R. Cho, J. Y. Ahn, J. H. Shin, H. S. Lee, W. K. Song, Y. Uh, J. H. Yum, D. E. Wong, K. W. Lee, and Y. S. Chong. 2003. Prevalence and diversity of extended spectrum ${\beta}$-lactamase producing Escherichia coli and Klebsiella pneumoniae isolates in Korea. Korea J. Clin. Microbiol. 6: 149-155
  18. Itokazu, G. S., J. P. Quinn, C. Bell-Dixon, F. M. Kahan, and R. A. Weinstein. 1996. Antimicrobial resistance rates among aerobic gram-negative bacilli recovered from patients in intensive care units: Evaluation of a national post marketing surveillance program. Clin. Infect. Dis. 23: 779-784 https://doi.org/10.1093/clinids/23.4.779
  19. Jacoby, G. A. and A. A. Medeiros. 1991. More extendedspectrum- lactamases. Antimicrob. Agents Chemother. 35: 1697-1704 https://doi.org/10.1128/AAC.35.9.1697
  20. Jacoby, G. A. 1997. Extended spectrum ${\beta}$-lactamases and other enzymes providing resistance to oxyimino-${\beta}$-lactams. Infect. Dis. Clin. NA 11: 875-887 https://doi.org/10.1016/S0891-5520(05)70395-0
  21. Jacoby, G. A. and L. S. Munoz-Price. 2005. The new ${\beta}$-lactamases. New Engl. J. Med. 352: 380-391 https://doi.org/10.1056/NEJMra041359
  22. Jones, R. N., M. A. Pfaller, G. V. Doern, M. E. Erwin, and R. J. Hollis. 1998. Antimicrobial activity and spectrum investigation of eight broad-spectrum $beta$-lactam drugs: A 1997 surveillance trial in 102 medical centers in the United States, Cefepime Study Group. Diagn. Microbiol. Infect. Dis. 30: 215-228 https://doi.org/10.1016/S0732-8893(97)00234-4
  23. Kim, B. L., S. H. Jeong, J. Y. Koo, K. W. Lee, Y. S. Chong, T. J. Jeon, H. Y. Hwang, and M. H. Kim. 1999. Prevalence of extended spectrum ${\beta}$-lactamase producing Enterobacteriaceae and evaluation of methods for detection. Korea J. Clin. Microbiol. 2: 28-39
  24. Kim, Y. T. and H. K. Lee. 2000. Extended-spectrum ${\beta}$-lactamase (ESBL) typing of Klebsiella pneumoniae isolated from clinical specimen in Pusan. Korea J. Microbiol. 36: 221-227
  25. Livermore, D. M. 1995. ${\beta}$-Lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8: 557-584
  26. Moland, E. S., J. A. Black, A. Hossain, N. D. Hanson, K. S. Thomson, and S. Pottumarthy. 2003. Discovery of CTX-M-like extended-spectrum-lactamases in Escherichia coli isolates from five U.S. states. Antimicrob. Agents Chemother. 47: 2382-2383 https://doi.org/10.1128/AAC.47.7.2382-2383.2003
  27. NCCLS. 2004. Performance Standards for Antimicrobial Susceptibility Testing: 5th Informational Supplement. NCCLS document M100-S5. NCCLS, 771 East Lancaster Avenue, Villanova, Pennsylvania 19085
  28. Nuesch-Inderbinen, M. T., F. H. Kayser, and H. Hachler. 1997. Survey and molecular genetics of SHV ${\beta}$-lactamases in Enterobacteriaceae in Switzerland: Two enzymes, SHV-11 and SHV-12. Antimicrob. Agents Chemother. 41: 943-949
  29. Phillipon, A., G. Arlet, and P. H. Lagrange. 1994. Origin and impact of plasmid-mediated extended-spectrum beta-lactamases. Eur. J. Clin. Microbiol. Infect. Dis. 13 (Suppl.1): 17-29 https://doi.org/10.1007/BF02390681
  30. Poirel, L., M. Gniadkowski, and P. Nordmann. 2002. Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum ${\beta}$-lactamase CTX-M-15 and of its structurally related ${\beta}$-lactamase, CTX-M-3. J. Antimicrob. Chemother. 50: 1031-1034 https://doi.org/10.1093/jac/dkf240
  31. Sawai, T., S. Hirano, and A. Yamaguchi. 1987. Repression of porin synthesis by salicylate in Escherichia coli, Klebsiella pneumoniae and Serratia marcescens. FEMS Microbiol. Lett. 40: 233-246 https://doi.org/10.1111/j.1574-6968.1987.tb02031.x
  32. Son, S. H., D. J. Lee, C. G. Kim, J. M. Kim, and H. J. Bae. 1997. Distribution TEM, SHV type beta-lactamase gene of Escherichia coli and Klebsiella pneumoniae. Infection. 29: 271-276 https://doi.org/10.1007/s15010-001-2005-x
  33. Song, W. G., K. W. Lee, S. J. Kim, S. H. Jeong, C. H. Chang, and H. J. Shin. 2000. Extended-spectrum beta lactamase producing Escherichia coli and Klebsiella pneumoniae isolates from 12 hospitals in Korea. Korea J. Chemother. 18: 401-410
  34. Vandana, T., S. Sharma, and S. Chhibber. 2005. Expression of newer outer membrane proteins (OMPs) induced by cephalosporins and quinolone group of antibiotics in Klebsiella pneumoniae. J. Microbiol. Biotechnol. 15: 421-424