Optical Properties of Self-assembled InAs Quantum Dots with Bimodal Site Distribution

이중 크기분포를 가지는 자발형성 InAs 양자점의 광특성 평가

  • Jung, S.I. (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Yeo, H.Y. (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Yun, I. (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Han, I.K. (Nano Devices Research Center, Korea Institute of Science and Technology) ;
  • Lee, J.I. (Advanced Industrial Metrology Group, Korea Research Institute of Standards and Science)
  • 정순일 (연세대학교 전기전자공학과) ;
  • 여현영 (연세대학교 전기전자공학과) ;
  • 윤일구 (연세대학교 전기전자공학과) ;
  • 한일기 (한국과학기술연구원 나노소자연구센터) ;
  • 이주인 (한국표준과학연구원 첨단산업측정그룹)
  • Published : 2006.05.01

Abstract

We report a photoluminescence (PL) study on the growth process of self-assembled InAs quantum dots (QDs) under the various growth conditions. Distinctive double-peak feature was observed in the PL spectra of the QD samples grown at the relatively high substrate temperature. From the excitation power-dependent PL and the temperature-dependent PL measurements, the double-peak feature is associated with the ground state transitions from InAs QDs with two different size branches. In addition, the variation in the bimodal size distribution of the QD ensembles with different InAs coverage is demonstrated.

서로 다른 성장조건 하에서 자발형성 InAs 양자점 (quantum dot, QD)을 제작하고. 그 특성을 photoluminescence (PL) 로 분석하였다. 비교적 높은 기판온도에서 성장된 QD 시료들의 PL 스펙트럼에서 분명한 차이를 나타내는 double-peak이 관측되었다. 온도 및 여기광 출력의존성 (temperature- and excitation power dependence) PL을 이용하여 그 double-peak이 서로 다른 크기분포를 가지는 두개의 InAs QD집단에서의 기저발광 (Eo) 에 의한 peak 임을 알 수 있었다. 게다가 이중크기분포에서 InAs 두께변화는 서로 대립되는 두 QD집단에서 QD 수의 변화를 초래한다는 것 또한 증명하였다.

Keywords

References

  1. S. I. Jung, J. J. Yoon, H. J. Park, Y. M. Park, M. H. Jeon, J. Y. Leem, C. M. Lee, E. T. Cho, J. I. Lee, J. S. Kim, J. S. Son, J. S. Kim, D. Y. Lee, and I. K. Han, Physica E 26, 100 (2005) https://doi.org/10.1016/j.physe.2004.08.032
  2. J. S. Kim, J. H. Lee, S. U. Hong, H.-S. Kwack, C. W. Lee, and D. K. Oh, ETRI. J. 26, 475 (2004) https://doi.org/10.4218/etrij.04.0104.0028
  3. R. Leon, P. M. Petroff, D. Leonard, and S. Farad, Science 267, 1966 (1995) https://doi.org/10.1126/science.267.5206.1966
  4. M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B 52, 11969 (1995) https://doi.org/10.1103/PhysRevB.52.11969
  5. S. J. Lee, S. K. Noh, J. W. Choe, and E. K. Kim, J. Cryst. Growth 267, 405 (2004) https://doi.org/10.1016/j.jcrysgro.2004.04.014
  6. J. S. Kim, P. W. Yu, J. Y. Leem, J. I. Lee, S. K. Noh, J. S. Kim, G. H. Kim, S. K. Kang, S. I. Ban, S. G. Kim, Y. D. Jang, U. H. Lee, J. S. Yim, and D. Lee, J. Cryst. Growth 234, 105 (2002) https://doi.org/10.1016/S0022-0248(01)01665-7
  7. J. Ibanez, R. Leon, D. T. Vu, S. Chaparro, S. R. Johnson, C. Navarro, and Y. H. Zhang, Appl. Phys. Lett. 79, 2013 (2001) https://doi.org/10.1063/1.1402642
  8. H. L. Wang, D. Ning, and S. L. Feng, J. Cryst. Growth 209, 630 (2000) https://doi.org/10.1016/S0022-0248(99)00740-X
  9. G. Saint-Girons, G. Patriarche, A. Mereuta, and I. Sagnes, J. Appl. Phys. 91, 3859 (2002) https://doi.org/10.1063/1.1448887
  10. L. Goldstein, F. Glas, J. Y. Marzin, M. N. Charasse, and G. Le Roux, Appl. Phys. Lett. 47, 1099 (1985) https://doi.org/10.1063/1.96342
  11. D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, Appl. Phys. Lett. 63, 3203 (1993) https://doi.org/10.1063/1.110199
  12. H. Lee, R. R. Lowe-Webb, W. Yang, and P. C. Sercel, Appl. Phys. Lett. 71, 2325 (1997) https://doi.org/10.1063/1.120062
  13. W. J. Schaffer, M. D. Lind, S. P. Kowalczyk, and R. W. Grant, J. Vac. Sci. Technol. B 1, 688 (1983) https://doi.org/10.1116/1.582579
  14. C. T. Foxon, B. A. Joyce, J. Cryst. Growth 44, 75 (1978) https://doi.org/10.1016/0022-0248(78)90330-5
  15. D. Leonard, M. Krishnamurthy, S. Fafard, J. L. Merz, and P. M. Petroff, J. Vac. Sci. Technol. B 12, 1063 (1994) https://doi.org/10.1116/1.587088