Mechanism and Adsorption Capacity of Arsenic in Water by Zero-Valent Iron

수용액 중 영가 철의 비소흡착 및 반응기작 구명

  • Yoo, Kyung-Yoal (Division of Biological Environment, Kangwon National University) ;
  • Ok, Yong-Sik (Division of Biological Environment, Kangwon National University) ;
  • Yang, Jae E. (Division of Biological Environment, Kangwon National University)
  • 유경열 (강원대학교 자원생물환경학부) ;
  • 옥용식 (강원대학교 자원생물환경학부) ;
  • 양재의 (강원대학교 자원생물환경학부)
  • Received : 2006.01.19
  • Accepted : 2006.04.19
  • Published : 2006.06.30

Abstract

Objective of this research was to evaluate optimal conditions of arsenic adsorption in water by zero-valent iron (ZVI). Batch experiment showed that adsorption of arsenic by ZVI followed a Langmuir isotherm model. The masses of As(V) adsorbed onto ZVI were increased as decreasing pH of the reacting solution (pH 3: 2.05, pH 5: 1.82, pH 7: 1.24, pH 9: 1.03 mg As/g $Fe^0$) and as increasing the temperature ($15^{\circ}C$ : 1.59, $25^{\circ}C$ : 1.81, 35 : $1.93^{\circ}C$ mg As/g $Fe^0$). The SEM and EDS (energy dispersive X-ray spectrometer) analysis of morphology and structure of ZVI before and after reacting with arsenic in water revealed that a relatively smooth and large surface of ZVI was transformed into a coarse and small surface particle after the reaction. The EDS spectra on the chemical composition of ZVI demonstrated that arsenic was incorporated into ZVI by adsorption mechanism. The XRD analysis also identified that the only peak for $Fe^0$ in the ZVI before the reaction and confirmed that $Fe^0$ was transformed into $Fe_2O_3$ and FeOOH, and As into $FeAsO_4{\cdot}2H_2O$.

본 연구는 비소로 오염된 물을 영가 철을 이용하여 복원하는 과정에서 영가 철의 비소 제거에 영향을 미치는 환경인자 간의 특성을 파악하고 기기분석을 통해 영가 철에 의한 비소의 흡착 반응기작을 구명하고자 수행되었다. 영가 철에 의한 As(V)의 흡착은 Langmuir 등온흡착 모델에 부합하였으며 As(V)의 흡착량은 반응 수용액의 pH가 낮을수록(pH 3: 2.05, pH 5: 1.82, pH 7: 1.24, pH 9: 1.03 mg As/g $Fe^0$), 그리고 온도가 증가할수록($15^{\circ}C$ : 1.59, $25^{\circ}C$ : 1.81, $35^{\circ}C$ : 1.93 mg As/g $Fe^0$) 증가하였다. 반응기작을 규명하기 위하여 SEM-EDS 분석을 수행한 결과, 반응 전의 영가철 표면은 부드럽고 큰 결정 형태를 나타내었으나 반응 후에는 매우 거칠고 작은 입자 형태를 나타내었다. 반응 후 영가 철의 조성물 분석결과, 영가 철 표면에 비소가 흡착됨을 알 수 있었다. 반응 전 후 영가 철의 결정구조 XRD를 이용하여 조사한 결과, $Fe^0$는 반응 후 $Fe_2O_3$ 및 FeOOH로 변화되었으며 As는 $FeAsO_4{\cdot}2H_2O$의 형태로 불용화 됨을 알 수 있었다. 이상의 결과에서 비소오염에 불용화 적용방법으로 영가 철을 사용 시 pH 및 온도 조건 등을 고려하여 현장에 적용해야 될 것으로 판단된다.

Keywords

References

  1. Alam, M.G.M., S. Tokunaga. and T. Maekawa. 2001. Extraction of arsenic in a synthetic arsenic-contaminated soil using phosphate. Chemosphere 43:1035-1041 https://doi.org/10.1016/S0045-6535(00)00205-8
  2. Blowes , D.W., C.J. Ptacek. and J.L. Jambor. 1997. In-situ remediation of Cr(VI)contaminated ground water using permeable reactive walls. Environ. Sci. Technol. 31:3348-3357 https://doi.org/10.1021/es960844b
  3. Environmental Protection Agency. 1997. Permeable reactive barriers for remediation of contaminated groudwater. EPA OSWER, EPA-450-A-35-100
  4. Hervert, R.B. 2003. Zinc immobilization by zero valent $Fe^0$: surface chemistry and mineralogy of reaction products. Mineralogical Magazine 67:1285-1298 https://doi.org/10.1180/0026461036760165
  5. Holan. Z.R., B. Volesky, and I. Prasetyo. 1993. Biosorption of cadmium by biomass of marine algae. Biotech. Bioeng. 41:819-825 https://doi.org/10.1002/bit.260410808
  6. Johnson. T.L., M.M. Scherer, and P.G. Tratnyek. 1996. Kinetics of halogenated organic compound degradation by iron metal. Environ. Sci. Technol. 30:2634-2639 https://doi.org/10.1021/es9600901
  7. Kim. J.S. 2001. Reduction of Cr(VI) using zero-valent iron (ZVI). MS Thesis, Kangwon Nation University, Chuncheon, p.52-65
  8. Kim. M.J., K.H. Ahn, and Y.J. Jung. 2003. Adsorption of arsenic in soil: kinetics and equilibrium. J. of KSEE 25:407-414
  9. Ok, Y.S., J.H. Jung, O.M. Lee. S.K. Lim. and J.G. Kim. 2003a. Surface complexation modeling of cadmium sorption onto synthetic goethite and quartz. Korean J. Soil Sci. Fert. 36:210-217
  10. Ok, Y.S., O.M. Lee. J.H. Jung, S.K. Lim. and J.G. Kim. 2003b. Soil-water partition coefficients for cadmium in some Korean soils. Korean J. Soil Sci. Fert. 36:200-209
  11. Pratt, A.R. D.W. Blowes, and C.J. Ptacek. 1997. Products of chromate reduction on proposed subsurface remediation material. Environ. Sci. Technol. 31:2492-2498 https://doi.org/10.1021/es9607897
  12. Rau, I., A. Gonzalo, and M. Valiente. 2003. Arsenic(V) adsorption by immobilized iron mediation. Reactive and Functional Polymers 54:85-94 https://doi.org/10.1016/S1381-5148(02)00184-0
  13. Sparks. D.L. 1995. Environmental soil chemistry. Academic Press. USA. p.99-185
  14. Yan, X.P., and R. Kerrich. 2000. Distribution of arsenic(III). arsenic(V) and total inorganic arsenic in porewater from a thick till and clay-rich aquitard sequence, Saskatchewan, Canada. Geochim. Cosmochim. Acta 64:2637-2648 https://doi.org/10.1016/S0016-7037(00)00380-X
  15. Yang. J.K.. S.I. Lee. D.H. Rhu. H.K. Kwon, J.Y. Sung, and J.H. Jo. 2003. Adsorption efficiency of toxic As(III) onto iron-coated sand. J. of KSEE. 25:853-859
  16. Yang. J.E., J.S. Kim, Y.S. Ok, and K.Y. Yoo. 2005. Reduction efficiency of Cr(VI) in aqueous solution by different source of zero-valent irons. Korean J. Environ. Agric. 24:203-209 https://doi.org/10.5338/KJEA.2005.24.3.203
  17. Yang. J.E., J.S. Kim, Y.S. Ok, and K.Y. Yoo. 2006. Mechanistic evidence and efficiency of the Cr(VI) reduction in water by different source of zerovalent irons. Water Sci. Technol. (accepted)