Browse > Article

Application of qDVC Method for Measuring Viable Cells in Lakes  

Kim, Mi-Ree (Dept. of Environmental Science, Kangwon National University)
Seo, Eun-Young (Dept. of Environmental Science, Kangwon National University)
Choi, Seung-Ik (Institute of Environment Research, Kangwon National University)
Ahn, Tae-Seok (Dept. of Environmental Science, Kangwon National University)
Publication Information
Korean Journal of Microbiology / v.42, no.3, 2006 , pp. 205-209 More about this Journal
Abstract
For measuring the viable cells in lakes, quantitative direct viable count (qDVC) method is applied. In the qDVC process, the final concentration of glycine is fixed as 2%. For confirming the effectiveness of qDVC for enumerating the viable cells, the viable bacterial numbers were measured by plate count, CTC reduction method and qDVC method at 5 different lakes. Among these 3 methods, the bacterial numbers by qDVC is $2.4{\sim}6.0$ times higher than those by the other 2 methods. And by the qDVC method, the viable cells were easily discriminated from dead or dormant cells.
Keywords
active bacteria; CTC; glycine; qDVC; viable cell;
Citations & Related Records
연도 인용수 순위
  • Reference
1 석정현, 홍선희, 김범철, 안태석. 2001. 소양호에서 활성세균수의 계절적.수직적 변화. 한국미생물학회지. 37, 80-84
2 이동훈, 안태석, 조규송. 1990. 소양호에서의 종속영양세 균의 종 구성 및 alkaline phosphatase 분비 세균에 관한 연구. 한국미생물학회지. 28, 204-219
3 홍선희, 김옥선, 송홍규, 이동훈, 안태석. 2001. Bacillus 속 세균을 검출하기 위한 fluorescent in situ hybridization 방법의 개발. 한국미생물학회지. 37, 204-208
4 Creach, V., A.C. Baudoux, G. Bertru, and B.L. Rouzic. 2003. Direct estimate of active bacteria: CTC use and limitations. J. Microbiol. Methods 52, 19-28   DOI   ScienceOn
5 Kogure, K., U. Simidu, and N. Taga. 1984. An improved direct viable count method for aquatic bacteria. Arch. Hydrobiol. 102, 117-122
6 Yokomaku, D., N. Yamaguchi, and M. Nasu. 2000. Improved direct viable count procedure for quantitative estimation of bacterial viability in freshwater environments. Appl. Envion. Microbiol. 66, 5544-5548   DOI
7 Rodriguez, G.G., D. Phipps, K. Ishiguro, and H.F. Ridgway. 1992. Use of a fluorescence redox probe for direct visualization of actively respiring bacteria. Appl. Environ. Microbiol. 58, 1801-1808
8 최승익. 1996. 소양호의 세균개체수와 활성도 변화에 관 한 연구. 이학박사학위논문, 강원대학교
9 Joux, F. and P. LeBaron. 1997. Ecological implications of an improved direct viable count method for aquatic bacteria. Appl. Environ. Microbiol. 63, 3643-3647
10 Zimmermann, R., R. Iturriaga, and J. Becker-Birck. 1978. Simultaneous determination of the total number of aquatic bacteria and the number theroof involved in respiration. Appl. Environ. Microbiol. 36, 926-935
11 Novitsky, J.A., and R.Y. Morita. 1978. Possible strategy for the survival of marine bacteria under starvation conditions. Mar. Biol. 48, 289-295   DOI
12 Hobbie, J.E., R.F. Daley, and S. Japer. 1977. Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol. 33, 1225-1228
13 Hammes, W., K.H. Schleifer, and O. Kandler. 1973. Mode of action of glycine on the biosynthesis of peptidoglycan. J. Bacteriol. 116, 1029-1053
14 Neuhaus, F.C. and W.P. Hammes. 1981. Inhibition of cell wall biosynthesis by analogues of alanine. Pharm. Ther. 14, 265-319   DOI   ScienceOn
15 Hagstrom, A., U. Larsson, P. Horstedt, and S. Normark. 1979. Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl. Environ. Microbiol. 37, 805-812
16 Amann, R., W. Ludwig, and K.H. Schleifer. 1994. Indentification of uncultured bacteria: A challenging task for molecular taxonomists. ASM news. 60, 360-365
17 Kogure, K., U. Simidu, and N. Taga. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25, 415-420   DOI   ScienceOn
18 Helbling, E.W., E.R. Marguet, V.E. Villafane, and O. Holm-Hansen. 1995. Bacterioplankton viability in antarctic waters as affected by solar ultraviolet radiation. Mar. Ecol. Prog. Ser. 126, 293-298   DOI
19 De Jonge, B.L., Y.S. Chang, N. Xu, and D. Gage. 1996. Effect of exogenous glycine on peptidoglycan composition and resistance in a methicillin-resistant Staphylococcus aureus strain. J. Antimicrob. Chemother. 40, 1498-1503