Catechol 1,2-Dioxygenase from Rhodococcus rhodochrous N75 Capable of Metabolizing Alkyl-Substituted Catechols

  • Cha Chang-Jun (Department of Biotechnology, Chung-Ang University)
  • 발행 : 2006.05.01

초록

Catechol 1,2-dioxygenase was purified from cells of R. rhodochrous N75 grown at the expense of benzoate and p-toluate as the sole sources of carbon. A single catechol 1,2-dioxygenase was found to be induced with either growth substrate. The enzyme has an estimated $M_r$ of 71,000 consisting of two identical subunits. Catechol 1,2-dioxygenase from R. rhodochrous N75 exhibits some unusual properties including: broad substrate specificity, extradiol cleavage activity with 4-methylcatechol and low $K_m$ values for halocatechols, suggesting that this enzyme is distinct from other known catechol and chlorocatechol 1,2-dioxygenases.

키워드

참고문헌

  1. Ahn, T.-S., G.-H. Lee, and H.-G. Song. 2005. Biodegradation of phenanthrene by psychrotrophic bacteria from lake Baikal. J. Microbiol. Biotechnol. 15: 1135-1139
  2. An, H. R., H. H. Park, and E. S. Kim. 2001. Cloning and expression of thermophilic catechol 1,2-dioxygenase gene (catA) from Streptomyces setonii. FEMS Microbiol. Lett. 195: 17-22 https://doi.org/10.1111/j.1574-6968.2001.tb10491.x
  3. Broderick, J. B. and T. V. O'Halloran. 1991. Overproduction, purification, and characterization of chlorocatechol dioxygenase, a non-heme iron dioxygenase with broad substrate tolerance. Biochemistry 30: 7349-7358 https://doi.org/10.1021/bi00243a040
  4. Bruce, N. C. and R. B. Cain. 1988. Beta-methylmuconolactone, a key intermediate in the dissimilation of methylaromatic compounds by a modified 3-oxoadipate pathway evolved in nocardioform actinomycetes. FEMS Microbiol. Lett. 50: 233-239
  5. Cha, C. J. and N. C. Bruce. 2003. Stereo- and regiospecific cis,cis-muconate cycloisomerization by Rhodococcus rhodochrous N75. FEMS Microbiol. Lett. 224: 29-34 https://doi.org/10.1016/S0378-1097(03)00395-1
  6. Cha, C. J., R. B. Cain, and N. C. Bruce. 1998. The modified beta-ketoadipate pathway in Rhodococcus rhodochrous N75: Enzymology of 3-methylmuconolactone metabolism. J. Bacteriol. 180: 6668-6673
  7. Choi, J.-H., T.-K. Kim, Y.-M. Kim, W.-C. Kim, G.-J. Joo, K. Y. Lee, and I.-K. Rhee. 2005. Cloning and characterization of cyclohexanol dehydrogenase gene from Rhodococcus sp. TK6. J. Microbiol. Biotechnol. 15: 1189-1196
  8. Dorn, E. and H. J. Knackmuss. 1978. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem. J. 174: 85-94 https://doi.org/10.1042/bj1740085
  9. Dorn, E. and H. J. Knackmuss. 1978. Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem. J. 174: 73-84 https://doi.org/10.1042/bj1740073
  10. Fujiwara, M., L. A. Golovleva, Y. Saeki, M. Nozaki, and O. Hayaishi. 1975. Extradiol cleavage of 3-substituted catechols by an intradiol dioxygenase, pyrocatechase, from a Pseudomonad. J. Biol. Chem. 250: 4848-4855
  11. Hou, C. T., R. Patel, and M. O. Lillard. 1977. Extradiol cleavage of 3-methylcatechol by catechol 1,2-dioxygenase from various microorganisms. Appl. Environ. Microbiol. 33: 725-727
  12. Jang, J. Y., D. Kim, H. W. Bae, K. Y. Choi, J. C. Chae, G. J. Zylstra, Y. M. Kim, and E. Kim. 2005. Isolation and characterization of a Rhodococcus species strain able to grow on ortho- and para-xylene. J. Microbiol. 43: 325-330
  13. Kim, J. S., J. H. Kim, E. K. Ryu, J. K. Kim, C. K. Kim, I. G. Hwang, and K. Lee. 2004. Versatile catabolic properties of Tn4371-encoded bph pathway in Comamonas testosteroni (formerly Pseudomonas sp.) NCIMB 10643. J. Microbiol. Biotechnol. 14: 302-311
  14. Klecka, G. M. and D. T. Gibson. 1981. Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl. Environ. Microbiol. 41: 1159-1165
  15. Larkin, M. J., L. A. Kulakov, and C. C. Allen. 2005. Biodegradation and Rhodococcus-masters of catabolic versatility. Curr. Opin. Biotechnol. 16: 282-290 https://doi.org/10.1016/j.copbio.2005.04.007
  16. Maltseva, O. V., I. P. Solyanikova, and L. A. Golovleva. 1991. Catechol 1,2-dioxygenases of a chlorophenol-degrading strain of Rhodococcus erythropolis: Purification and properties. Biochemistry (Mosc) 56: 1548-1555
  17. Maltseva, O. V., I. P. Solyanikova, and L. A. Golovleva. 1994. Chlorocatechol 1,2-dioxygenase from Rhodococcus erythropolis 1CP. Kinetic and immunochemical comparison with analogous enzymes from gram-negative strains. Eur. J. Biochem. 226: 1053-1061 https://doi.org/10.1111/j.1432-1033.1994.01053.x
  18. Mars, A. E., J. Kingma, S. R. Kaschabek, W. Reineke, and D. B. Janssen. 1999. Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31. J. Bacteriol. 181: 1309-1318
  19. Matsumura, E., S. Ooi, S. Murakami, S. Takenaka, and K. Aoki. 2004. Constitutive synthesis, purification, and characterization of catechol 1,2-dioxygenase from the aniline-assimilating bacterium Rhodococcus sp. AN-22. J. Biosci. Bioeng. 98: 71-76 https://doi.org/10.1016/S1389-1723(04)70245-5
  20. Miller, D. J. 1979. Aromatic metabolism in nocardioform actinomycetes. PhD Thesis, University of Kent
  21. Moiseeva, O. V., I. P. Solyanikova, S. R. Kaschabek, J. Groning, M. Thiel, L. A. Golovleva, and M. Schlomann. 2002. A New modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: Genetic and biochemical evidence. J. Bacteriol. 184: 5282-5292 https://doi.org/10.1128/JB.184.19.5282-5292.2002
  22. Murakami, S., N. Kodama, R. Shinke, and K. Aoki. 1997. Classification of catechol 1,2-dioxygenase family: sequence analysis of a gene for the catechol 1,2-dioxygenase showing high specificity for methylcatechols from aniline-assimilating Rhodococcus erythropolis AN-13. Gene 185: 49-54 https://doi.org/10.1016/S0378-1119(96)00629-4
  23. Murakami, S., C. L. Wang, A. Naito, R. Shinke, and K. Aoki. 1998. Purification and characterization of four catechol 1,2-dioxygenase isozymes from the benzamide-assimilating bacterium Arthrobacter species BA-5-17. Microbiol. Res. 153: 163-171 https://doi.org/10.1016/S0944-5013(98)80036-0
  24. Nakai, C., K. Horiike, S. Kuramitsu, H. Kagamiyama, and M. Nozaki. 1990. Three isozymes of catechol 1,2-dioxygenase (pyrocatechase), alpha alpha, alpha beta, and beta beta, from Pseudomonas arvilla C-1. J. Biol. Chem. 265: 660-665
  25. Ngai, K. L. and L. N. Ornston. 1988. Abundant expression of Pseudomonas genes for chlorocatechol metabolism. J. Bacteriol. 170: 2412-2413 https://doi.org/10.1128/jb.170.5.2412-2413.1988
  26. Park, D. W., K. Lee, J. C. Chae, K. Kudo, and C. K. Kim. 2004. Genetic structure of xyl gene cluster responsible for complete degradation of (4-chloro)benzoate from Pseudomonas sp. S-47. J. Microbiol. Biotechnol. 14: 483-489
  27. Powlowski, J. B., J. Ingebrand, and S. Dagley. 1985. Enzymology of the beta-ketoadipate pathway in Trichosporon cutaneum. J. Bacteriol. 163: 1136-1141
  28. Solyanikova, I., E. Golovlev, O. Lisnyak, and L. Golovleva. 1999. Isolation and characterization of catechol 1,2-dioxygenases from Rhodococcus rhodnii strain 135 and Rhodococcus rhodochrous strain 89: Comparison with analogous enzymes of the ordinary and modified orthocleavage pathways. Biochemistry (Mosc) 64: 824-831
  29. Solyanikova, I. P., O. V. Maltseva, and L. A. Golovleva. 1992. Purification and properties of catechol 1,2-dioxygenase II from Pseudomonas putida 87. Biochemistry (Mosc) 57: 1310-1316
  30. Strachan, P. D., A. A. Freer, and C. A. Fewson. 1998. Purification and characterization of catechol 1,2-dioxygenase from Rhodococcus rhodochrous NCIMB 13259 and cloning and sequencing of its catA gene. Biochem. J. 333: 741-747 https://doi.org/10.1042/bj3330741