Bioelectrochemical Denitrification Using Permeabilized Ochrobactrum anthropi SY509

  • Choi Kyung-Oh (School of Chemical and Biological Engineering, Seoul National University) ;
  • Song Seung-Hoon (Bio-MAX Institute, Seoul National University) ;
  • Kim Yang-Hee (School of Chemical and Biological Engineering, Seoul National University) ;
  • Park Doo-Hyun (Department of Biological Engineering, Seokyeong University) ;
  • Yoo Young-Je (School of Chemical and Biological Engineering, Seoul National University)
  • 발행 : 2006.05.01

초록

To remove nitrate from wastewater, a novel bioelectrochemical denitrification system is introduced. In this proposed system, biological reactions are coupled with reactions on the electrode, whereby the electrons are transferred to the bacterial enzymes via a mediator as an electron carrier. The denitrification reaction was achieved with permeabilized Ochrobactrum anthropi SY509 containing denitrifying enzymes, such as nitrate reductase, nitrite reductase, and nitrous oxide reductase, and methyl viologen was used as the mediator. The electron transfer from the electrode to the enzymes in the bacterial cells was confirmed using cyclic voltammetry. A high removal efficiency of nitrate was achieved when the bioelectrochemical system was used with the permeabilized cells. Furthermore, when the permeabilized cells were immobilized to a graphite felt electrode using a calcium alginate matrix containing graphite powder, a high removal efficiency was achieved (4.38 nmol/min mg cell) that was comparable to the result when using the free permeabilized cells.

키워드

참고문헌

  1. Choi, K. O., S. H. Song, and Y. J. Yoo. 2004. Permeabilization of Ochrobactrum anthropi SY509 cells with organic solvents for whole cell biocatalyst. Biotechnol. Bioprocess Eng. 9: 147-150 https://doi.org/10.1007/BF02942284
  2. Felix, H. 1982. Permeabilized cells. Anal. Biochem. 120: 211-234 https://doi.org/10.1016/0003-2697(82)90340-2
  3. Flores, M. V., C. E. Voget, and R. J. J. Ertola. 1994. Permeabilization of yeast cells (Kluyveromyces lactis) with organic solvents. Enz. Microb. Technol. 16: 340-346 https://doi.org/10.1016/0141-0229(94)90177-5
  4. Jung, S. K., Y. R. Chae, J. M. Yoon, B. W. Cho, and K. G. Ryu. 2005. Immobilization of glucose oxidase on multi-wall carbon nanotubes for biofuel cell applications. J. Microbiol. Biotechnol. 15: 234-238 https://doi.org/10.1159/000089397
  5. Kano, K. and T. Ikeda. 2000. Fundamentals and practices of mediated bioelectrocatalysis. Anal. Sci. 16: 1013-1021 https://doi.org/10.2116/analsci.16.1013
  6. Knowles, R. 1982. Denitrification. Microbiol. Rev. 46: 43-70
  7. Lim, J. S., S. W. Park, J. W. Lee, K. K. Oh, amd S. W. Kim. 2005. Immobilization of Penicillium citrinum by entrapping cells in calcium alginate for the production of neofructooligosaccharides. J. Microbiol. Biotechnol. 15: 1317-1321
  8. Mellor, R. B., J. Ronnennberg, H. W. Campbell, and S. Diekmann. 1992. Reduction of nitrate and nitrite in water by immobilized enzymes. Nature 355: 717-719 https://doi.org/10.1038/355717a0
  9. Nam, Y. S., Y. S. Kim, W. S. Shin, W. H. Lee, and J. W. Choi. 2004. Electrochemical property of immobilized spinach ferredoxin on HOPG electrode. J. Microbiol. Biotechnol. 14: 1038-1042
  10. Park, D. H., M. Laivenieks, M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65: 2912-2917
  11. Park, D. H. and Y. K. Park. 2001. Bioelectrochemical denitrification by Pseudomonas sp. or anaerobic bacterial consortium. J. Microbiol. Biotechnol. 11: 406-411
  12. Schuhmann, W. 2002. Amperometric enzyme biosensors based on optimized electron-transfer pathways and nonmanual immobilization procedures. Rev. Mol. Biotech. 82: 425-441 https://doi.org/10.1016/S1389-0352(01)00058-7
  13. Shapleigh, J. P., K. J. P. Davies, and W. J. Payne. 1987. Detergent inhibition of nitric-oxide reductase activity. Biochim. Biophys. Acta 911: 334-340 https://doi.org/10.1016/0167-4838(87)90074-4
  14. Shin, H. S., M. K. Jain, M. Chartrain, and J. G. Zeikus. 2001. Evaluation of an electrochemical bioreactor system in the biotransformation of 6-bromo-2-tetralone to 6-bromo-2- tetralol. Appl. Microbiol. Biotechnol. 57: 506-510 https://doi.org/10.1007/s002530100809
  15. Shin, I. H., S. J. Jeon, H. S. Park, and D. H. Park. 2004. Catalytic oxidoreduction of pyruvate/lactate and acetaldehyde/ ethanol coupled to electrochemical oxidoreduction of $NAD^+$/ NADH. J. Microbiol. Biotechnol. 14: 540-546
  16. Shumilin, I. A., V. V. Nikandrov, V. O. Popov, and A. A. Krasnovsky. 1992. Photogeneration of NADH under coupled action of CdS semiconductor and hydrogenase from Alcaligenes eutrophus without exogenous mediators. FEBS Lett. 306: 125-128 https://doi.org/10.1016/0014-5793(92)80982-M
  17. Song, S. H., S. H. Yeom, S. S. Choi, and Y. J. Yoo. 2002. Effect of aeration on denitrification by Ochrobactrum anthropi SY509. Biotechnol. Bioprocess Eng. 7: 352-356 https://doi.org/10.1007/BF02933520
  18. Torimura, M., H. Yoshida, K. Kano, T. Ikeda, T. Yoshida, and T. Nagasawa. 2000. Bioelectrochemical transformation of nicotinic acid into 6-hydroxynicotinic acid on Pseudomonas fluorescens TN5-immobilized column electrolytic flow system. J. Mol. Catal. B Enzym. 8: 265-273 https://doi.org/10.1016/S1381-1177(99)00077-6
  19. Vilker, V. L., V. Reipa, M. Mayhew, and M. J. Holden. 1999. Challenges in capturing oxygenase activity in vitro. J. Am. Oil Chem. Soc. 76: 1283-1289 https://doi.org/10.1007/s11746-999-0140-1