References
- Choi, K. O., S. H. Song, and Y. J. Yoo. 2004. Permeabilization of Ochrobactrum anthropi SY509 cells with organic solvents for whole cell biocatalyst. Biotechnol. Bioprocess Eng. 9: 147-150 https://doi.org/10.1007/BF02942284
- Felix, H. 1982. Permeabilized cells. Anal. Biochem. 120: 211-234 https://doi.org/10.1016/0003-2697(82)90340-2
- Flores, M. V., C. E. Voget, and R. J. J. Ertola. 1994. Permeabilization of yeast cells (Kluyveromyces lactis) with organic solvents. Enz. Microb. Technol. 16: 340-346 https://doi.org/10.1016/0141-0229(94)90177-5
- Jung, S. K., Y. R. Chae, J. M. Yoon, B. W. Cho, and K. G. Ryu. 2005. Immobilization of glucose oxidase on multi-wall carbon nanotubes for biofuel cell applications. J. Microbiol. Biotechnol. 15: 234-238 https://doi.org/10.1159/000089397
- Kano, K. and T. Ikeda. 2000. Fundamentals and practices of mediated bioelectrocatalysis. Anal. Sci. 16: 1013-1021 https://doi.org/10.2116/analsci.16.1013
- Knowles, R. 1982. Denitrification. Microbiol. Rev. 46: 43-70
- Lim, J. S., S. W. Park, J. W. Lee, K. K. Oh, amd S. W. Kim. 2005. Immobilization of Penicillium citrinum by entrapping cells in calcium alginate for the production of neofructooligosaccharides. J. Microbiol. Biotechnol. 15: 1317-1321
- Mellor, R. B., J. Ronnennberg, H. W. Campbell, and S. Diekmann. 1992. Reduction of nitrate and nitrite in water by immobilized enzymes. Nature 355: 717-719 https://doi.org/10.1038/355717a0
- Nam, Y. S., Y. S. Kim, W. S. Shin, W. H. Lee, and J. W. Choi. 2004. Electrochemical property of immobilized spinach ferredoxin on HOPG electrode. J. Microbiol. Biotechnol. 14: 1038-1042
- Park, D. H., M. Laivenieks, M. V. Guettler, M. K. Jain, and J. G. Zeikus. 1999. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65: 2912-2917
- Park, D. H. and Y. K. Park. 2001. Bioelectrochemical denitrification by Pseudomonas sp. or anaerobic bacterial consortium. J. Microbiol. Biotechnol. 11: 406-411
- Schuhmann, W. 2002. Amperometric enzyme biosensors based on optimized electron-transfer pathways and nonmanual immobilization procedures. Rev. Mol. Biotech. 82: 425-441 https://doi.org/10.1016/S1389-0352(01)00058-7
- Shapleigh, J. P., K. J. P. Davies, and W. J. Payne. 1987. Detergent inhibition of nitric-oxide reductase activity. Biochim. Biophys. Acta 911: 334-340 https://doi.org/10.1016/0167-4838(87)90074-4
- Shin, H. S., M. K. Jain, M. Chartrain, and J. G. Zeikus. 2001. Evaluation of an electrochemical bioreactor system in the biotransformation of 6-bromo-2-tetralone to 6-bromo-2- tetralol. Appl. Microbiol. Biotechnol. 57: 506-510 https://doi.org/10.1007/s002530100809
-
Shin, I. H., S. J. Jeon, H. S. Park, and D. H. Park. 2004. Catalytic oxidoreduction of pyruvate/lactate and acetaldehyde/ ethanol coupled to electrochemical oxidoreduction of
$NAD^+$ / NADH. J. Microbiol. Biotechnol. 14: 540-546 - Shumilin, I. A., V. V. Nikandrov, V. O. Popov, and A. A. Krasnovsky. 1992. Photogeneration of NADH under coupled action of CdS semiconductor and hydrogenase from Alcaligenes eutrophus without exogenous mediators. FEBS Lett. 306: 125-128 https://doi.org/10.1016/0014-5793(92)80982-M
- Song, S. H., S. H. Yeom, S. S. Choi, and Y. J. Yoo. 2002. Effect of aeration on denitrification by Ochrobactrum anthropi SY509. Biotechnol. Bioprocess Eng. 7: 352-356 https://doi.org/10.1007/BF02933520
- Torimura, M., H. Yoshida, K. Kano, T. Ikeda, T. Yoshida, and T. Nagasawa. 2000. Bioelectrochemical transformation of nicotinic acid into 6-hydroxynicotinic acid on Pseudomonas fluorescens TN5-immobilized column electrolytic flow system. J. Mol. Catal. B Enzym. 8: 265-273 https://doi.org/10.1016/S1381-1177(99)00077-6
- Vilker, V. L., V. Reipa, M. Mayhew, and M. J. Holden. 1999. Challenges in capturing oxygenase activity in vitro. J. Am. Oil Chem. Soc. 76: 1283-1289 https://doi.org/10.1007/s11746-999-0140-1