나노 스케일 MuGFET의 소자 구조 최적화에 관한 연구

A study on the device structure optimization of nano-scale MuGFETs

  • Lee Chi-Woo (Department of Electronics Engineering, University of Incheon) ;
  • Yun Serena (Department of Electronics Engineering, University of Incheon) ;
  • Yu Chong-Gun (Department of Electronics Engineering, University of Incheon) ;
  • Park Jong-Tae (Department of Electronics Engineering, University of Incheon)
  • 발행 : 2006.04.01

초록

본 연구에서는 나노 스케일 MuGFET(Mutiple-Gate FETs)의 단채널 효과와 corner effect를 3차원 시뮬레이션을 통하여 분석하였다. 문턱전압 모델을 이용하여 게이트 숫자(Double-gate=2, Tri-gate=3, Pi-gate=3.14, Omega-gate=3.4, GAA=4)를 구하였으며 추출된 게이트 숫자를 이용하여 각각의 소자 구조에 맞는 natural length($\lambda$)값을 얻을 수 있었다. Natural length를 통하여 MuGFET의 단채널 효과를 피할 수 있는 최적의 소자 구조(실리콘 두께, 게이트 산화막의 두께 등)를 제시 하였다. 이러한 corner effect를 억제하기 위해서는 채널 불순물의 농도를 낮게 하고, 게이트 산화막의 두께를 얇게 하며, 코너 부분을 약 17%이상 라운딩을 해야 한다는 것을 알 수 있었다.

This paper describes the short-channel effect(SCE), corner effect of nano-scale MuGFETs(Multiple-Gate FETs) by three-dimensional simulation. We can extract the equivalent gate number of MuGFETs(Double-gate=2, Tri-gate=3, Pi-gate=3.14, Omega-gate=3.4, GAA=4) by threshold voltage model. Using the extracted gate number(n) we can calculate the natural length for each gate devices. We established a scaling theory for MuGFETs, which gives a optimization to avoid short channel effects for the device structure(silicon thickness, gate oxide thickness). It is observed that the comer effects decrease with the reduction of doping concentration and gate oxide thickness when the radius of curvature is larger than 17 % of the channel width.

키워드

참고문헌

  1. International Technology Roadmap for semiconductor, http://public.itrs.net
  2. J.P Colinge et al.,'Thin Film SOI Technology: The solution to Many submicron CMOS Problems,' Tech. of Digest IEDM., pp. 817-820, 1989 https://doi.org/10.1109/IEDM.1989.74178
  3. R.Chau et al.,'A 50nm depleted CMOS transistor(DST)', Technical Digest of IEDM., pp. 621-624, 2001
  4. T. Sekigawa, Y. Hayashi, 'Calculated threshold-voltage characteristics of an XMOS transistor having an additional bottom gate' Solid state Electron., vol 27, pp.827-828, 1984 https://doi.org/10.1016/0038-1101(84)90036-4
  5. D. Hisamoto et al., 'FinFETa self-aligned double-gate MOSFET scalable to 20nm' IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2320-2325, Dec 2000 https://doi.org/10.1109/16.887014
  6. R. Chau et al., 'Advanced Depleted-Substrate Transistors: Single-gate, Double-gate and Tri-gate,' in Intl. Conf. on Solid State Dev ices and Materials, pp, 68-69, 2002
  7. J,-T. Park, J,-P. Colinge, and C. H. Diaz, 'Pi-Gate SOI MOSFET,' IEEE Electron Device Letters, vol. 22, no. 8, pp. 405-406, Aug 2001 https://doi.org/10.1109/55.936358
  8. F-L. Yang, H-Y Chen, F-C. Cheng, C-C Huang, C-Y Chang, H-K Chiu, '25 nm CMOS Omega FETs', Technical Digest of IEDM, pp. 255-258, 2000 https://doi.org/10.1109/IEDM.2002.1175826
  9. J.P. Colinge, M.H. Gao, A Romano-Rodriguez, H. Maes, and C. Claeys, 'Silicon-on-insulator gate-all-around device', Technical Digest of the IEDM, pp. 595-598, 1990 https://doi.org/10.1109/IEDM.1990.237128
  10. http://www.silvaco.com
  11. Christoper P. Auth and James D. Plummer, 'A Simple Model for Threshold Voltage of Surrounding-Gate MOSFETs,' IEEE Trans. Electron Devices, vol. 45, no. 11, pp.2381 -2383, Nov 1998 https://doi.org/10.1109/16.726665
  12. Kunihiro Suzuki, Tetsu Tanaka, Yoshiharu Tosaka, Hiroshi Hone, and Yoshihiro Arimoto, 'Scaling Theory for Double-Gate SOI MOSFET's,' IEEE Trans. Electron Devices, vol. 40, no. 12, pp.23262329, Dec 1993 https://doi.org/10.1109/16.249482
  13. Christoper P. Auth and James D. Plummer, 'Scaling Theory for Cylindrical Fully- Depleted, Surrounding-Gate MOSFETs,' IEEE Electron Device Letters, vol. 22, pp.487-489 https://doi.org/10.1109/55.553049
  14. W.Xiong, J.W. Park, and J.P. Colinge., 'Comer effect in multiple-gate SOI MOSFETs' ,Proceedings of the IEEE International SOI Conference, 2003, pp, 111-113 https://doi.org/10.1109/SOI.2003.1242919
  15. H-S, Wong. et al., 'Modeling of transconductance degradation and extraction of threshold voltage in thin oxide MOSFETs', Solid state Electron., vol 30, no 9, pp. 953-968, 1987 https://doi.org/10.1016/0038-1101(87)90132-8
  16. J.P. Colinge, J.W. Park, and W. Xing, 'Threshold voltage and subthreshold slope of multiple-gate SOI MOSFETs', IEEE Electron Device Letters, vol. 24, pp. 515-517, 2003 https://doi.org/10.1109/LED.2003.815153