Fibrinolytic Activities and Effects of Gamma-Irradiated on Seeds from Coix lacryma-jobi L. Carthamus tinctorius L. and Malva verticillata L.

율무, 홍화, 아욱종자의 혈전용해 효소활성 및 감마선 조사의 영향

  • Kwon Su-Jung (Biology Research Center of Industrial Accelerators, Dongshin University) ;
  • Lim Chae-Young (Biotechnology Industrialization Center, Dongshin University) ;
  • Kim Jae-Sung (Department of Genetic Engineering, Chosun University) ;
  • Park Min-Hee (Biology Research Center of Industrial Accelerators, Dongshin University) ;
  • Lee Sook-Young (Biology Research Center of Industrial Accelerators, Dongshin University)
  • 권수정 (동신대학교 산업용가속기이용생물연구센터) ;
  • 임채영 (동신대학교 생물자원산업화지원센터) ;
  • 김재성 (조선대학교 유전공학과) ;
  • 박민희 (동신대학교 산업용가속기이용생물연구센터) ;
  • 이숙영 (동신대학교 산업용가속기이용생물연구센터)
  • Published : 2006.02.01

Abstract

The fibrinolytic activities of soluble proteins extracted from seeds of Coix lacryma-jobi L., Carthamus tinctorius L. and Malva venicillata L. were studied. Fibrinolytic activity of extract from C. lacryma-jobi L. showed 1.3 times higher than plasmin used as positive control. The fibrinolytic enzyme was confirmed and extracted directly from seed of C. lacryma-jobi L. by a fibrin zymography. The protein was composed of a single polypeptide and its apparent molecular weight was found to be 7.8 kDa, as judged by SDS-polyacrylamide gel electrophoresis. The effect of temperature for the proteolytic enzyme activity were stabilized above $50^{\circ}C$ and then dramatically decreased. Also, the enzyme activity was clearly inhibited by APMSF, PMSF and TPCK, suggesting that it is a member of the chymotrypsin-like serine pretense. In addition, effects of gamma-irradiated on seed of each plants were revealed that 8 Gy and 64 Gy were higher than others. This result shown that gamma-irradiation of seeds were capable to increase the fibrinolytic activity. All these results suggest the pretense is a fibrinolytic enzyme belong to a family of chymotrypsin-like serine pretense.

미생물 및 동물에 비해 식물에서는 혈전용해효소에 대한 연구가 부족한 실정이며, 기존의 혈전용해효소가 가지는 혈전에 대한 비특이적, 부작용, 고가 등의 단점을 해결할 수 있는 새로운 혈전용해효소의 개발을 위하여 율무, 홍화, 아욱의 종자로부터 추출된 수용성 단백질의 혈전용해 활성을 조사하였다. 각각의 식물들로부터 추출된 조효소 용액은 기존 혈전 용해효소인 plasmin과 양성 대조군으로 하여 비교하여 fibrin 평판법으로 확인한 결과 피브린 응집을 효과적으로 분해하였다. 그 중 율무종자의 수용성 추출물의 혈전용해 활성은 양성 대조군인 plasmin과 비교하여 1.3배의 높은 활성을 나타내었다. 전체 수용성 단백질은 50-75% 에탄올을 이용하여 농축하였으며 율무의 혈전용해효소는 fibrin zymography를 수행하여 확인하고 직접 추출하였다. SDS-PAGE에 의하여 추출효소의 분자량을 측정한 결과 7.8 kDa으로 단일 polypeptide임을 확인하였으며, 효소 활성에 미치는 온도의 효과는 $50^{\circ}C$ 이상에서는 비교적 안정하였으나 더 낮은 온도에서는 급격히 효소활성이 감소하였다. 또한, 각종 단백질분해효소 저해제에 의한 영향을 조사한 결과 APMSF, PMSF, pepstatin A 그리고 TPCK에 강력하게 저해되는 것으로 보아 추출효소는 chymotrypsin과 유사한 serine protease의 하나로 생각되었다. 그러나 EGTA와 EDTA 처리에 의해서는 효소활성의 저해가 두드러지게 나타나지 않았다. 더욱이, 종자저장 중에 미생물에 의한 부패, 활력저하, 생리활성물질의 감소와 장기저장에 따른 에너지소비 증가 등이 문제가 되고 있어 저선량의 감마선 조사를 통해 율무, 홍화, 아욱의 종자로부터 혈전용해 효소활성에 미치는 효과 및 선량에 따른 차이를 조사하였는데 비조사 종자인 대조구와 비교하여 1 Gy, 4 Gy, 16 Gy, 32 Gy선량에서는 낮은 활성을 보였으면 반면에 8 Gy와 64 Gy의 선량에서는 더 높은 활성을 나타내었다. 이러한 결과는 Y선 조사가 종자의 혈전용해 활성을 향상시킬 가능성이 있을 것으로 생각된다. 이상의 모든 결과로 볼 때 율무의 추출 효소는 chymotrypsin-like serine protease에 속하는 혈전용해효소임을 확인할 수 있었다.

Keywords

References

  1. Markland, F. S. (1998), Snake venom and hemostatic system, Toxicon. 36(12), 1749-1800 https://doi.org/10.1016/S0041-0101(98)00126-3
  2. Davie, E. W., K. Fugikawa, and W. Kisiel (1991), The coagulation cascade: initiation, maintenance, and regulation, Biochemistry 30, 10363-10370 https://doi.org/10.1021/bi00107a001
  3. Reed, G. L., L. F. Lin, B. Parhaml-Seren, and P. Kussie (1995), Identification of plasminogen binding. region in streptokinase that is necessary for the creation of streptokinase plasminogen activator complex, Biochemistry 34, 10266-10271 https://doi.org/10.1021/bi00032a021
  4. Mullertz, S. and M. Lassen (1953), An activator system in blood indispensable for formation of plasmin by streptokinas,. Proc. Soc. Exp. Biol. Med. 82, 264
  5. D'Costa, S. S. and M. D. P. Boyle (1998), Interaction of a group A Streptococcus within human plasma results in assembly of a surface plasminogen activator that contributes to accupancy of surface plasmin-binding structures, Microbial Pathogenesis 24, 341-349 https://doi.org/10.1006/mpat.1998.0207
  6. Sumi, H., M. Seiki, N, Morimoto, H. Tsushima, M. Maruyama, and H. Mihara (1985), Plasma fibrinolysis after intraduodenal administration of urokinase in rats, Enzyme. 33, 121-127 https://doi.org/10.1159/000469420
  7. Kim, S. H. (1998), New trends of studying on potential activities of Doen-jang. Korea Soybean Diges. 15(1), 8-15
  8. Holden, R. W. (1990), Plasminogen activators: pharmacology and theraphy, Radiology 174, 993-1001 https://doi.org/10.1148/radiology.174.3.174-3-993
  9. Hellmann, K. and R. I. Hawkins (1964), Anticoagulant and fibrinolytic activities from Rhodnius prolixus, Stal. Nature 201, 1008-1009 https://doi.org/10.1038/2011008a0
  10. Hamouda, B. M. H. and M. Ammar (1984), Demonstration of plasminogen activators in the saliva of a predatory insect of the family of Reduviidae, Arch. Inst. Pasteur. Tunis. 61, 73-95
  11. Amarant, T. W. Burkltart, H. D. LeVine, C. L. Arocha-Pinango, and I. Parikh (1991), Isolation and complete amino acid sequence of two fibrinolytic proteases from the toxic Saturnid caterpillar Lonomia achelous, Biochim. Biophys. Acta. 1079, 214-221 https://doi.org/10.1016/0167-4838(91)90128-M
  12. Matsushima, A., K. Shioya, M. Kobayashi, Y. Kodera, and Y. Inada (1993), Activation of fibrinolysis with the protease from Dermatophagoides farinae, Thromb. Haemost. 70, 545
  13. Park, H-J. and S-D. Park (1998), Purification and chrarcteristics of fibrinolytic enzyme having molecular weight 45,000 dalton from Holotrachia extract, J. Herbology 13(1), 119-137
  14. Hahn, B. S., S. Y. Cho, M. Y. Ahn, and Y. S. Kim (2001), Purification and characterization of plasmin-like protease from Tenodera sinensis (Chinese mantis), Insect Biochemistry and molecular biology 31, 573-581 https://doi.org/10.1016/S0965-1748(00)00162-4
  15. Chung, K. H. and D. S. Kim (1992), Fibrinolytic and Cogulation Activities of Korean Snake Venoms, Korean Biochem. J. 25, 696-701
  16. Ouyang, C. and T. F. Huang (1976), Purification and properties of the fibrinolytic principle of Agkistrodon acutus venom, Biochimica et Biochemica Acta. 439, 146-153 https://doi.org/10.1016/0005-2795(76)90170-7
  17. Bajwa, S. S., H. Kirakossian, K. N. N. Reddy, and F. S. Markland (1982), Thrombin-like and fibrinolytic enzymes in the venoms from the gaboon viper (Bitis gabonica), eastern cottomnouth moccasin (Agkistrodon p. piscivorus) and southern copperhead (Agkistrodon c. contortrix) snakes, Toxicon. 20, 427-432 https://doi.org/10.1016/0041-0101(82)90005-8
  18. Dauod, E., A. Tu, and M. F. el-Asmar (1986), Isolation and characterization of an anticoagulant proteinase cerastase F-4 from Cerastes cerastes (Egyptian sand viper) venom, Thromb. Res. 42, 55-62 https://doi.org/10.1016/0049-3848(86)90196-9
  19. Ahmed, N. K., K. D. Tennant, F. S. Markland, and J. P. Lacz (1990), Biochemical characteristics of fibrolase, a fibrinolytic protease from snake venom, Haemostasis 20, 147-154
  20. Siigur, E. and J. Siigur (1991), Purification and characterization of lebetase, a fibrinolytic enzyme from Vipera lebetina (snake) venom, Biochim. Biophys. Acta. 1074, 223-229 https://doi.org/10.1016/0304-4165(91)90156-B
  21. Siigur, J., M. Samuel, K. Tonismagi, J. Subbi, E. Siigur, and A. T. Tu (1998), Biochemical characterization of lebetase, a direct-acting fibrinolytic enzyme from Vipera lebetina snake venom, Thrombosis research 90, 39-49 https://doi.org/10.1016/S0049-3848(98)00009-7
  22. Chiou, S. H., C. C. Hung, and K. F. Huang (1992), Characterization of a protease with alpha- and beta-fibrinogenase activity from the western diamondback rattlesnake, Crotalus atrox, Biochim. Biophys. Res. Commun. 187, 389-396 https://doi.org/10.1016/S0006-291X(05)81505-0
  23. Zhang, Y., A. Wisner, Y. Xiong, and C. Bon (1995), A novel plasminogen activater from snake venom, J. Biol. Chem. 270, 10246-10255 https://doi.org/10.1074/jbc.270.17.10246
  24. Datta, G., A. Dong, J. Witt, and A. T. Tu (1995), Biochemical characterization od basilase, a fibrinolytic enzyme from Crotalus basilicus basilicus, Achieves Biochemistry and Biophysics 317, 365-373 https://doi.org/10.1006/abbi.1995.1176
  25. Hahn, B. S., I. M. Chang, and Y. S. Kim (1995), Purification and characterization of picivorase I and II, the fibrinolytic enzymes from eastern cottomnouth moccasin venom (Agkistrodon piscivorus piscivorus), Toxicon. 33(7), 929-941 https://doi.org/10.1016/0041-0101(95)00008-A
  26. Sugiki, M., Yoshida, E., Anai, K., and M. Maruyama (1998), Activation of single-chain urokinase-type plasminogen activator by a hemorrhagic metalloproteinase, jararafibrase I, in Bothrops Jararaca venom, Toxicon. 36, 993-1000 https://doi.org/10.1016/S0041-0101(97)00137-2
  27. Ramirez, M. S., E. E. Sanchez, C. Garcia-Prieto, J. C. Perez, G. R. Chapa, M. R. McKeller, R. Ramirez, and Y, D. Anda (1999), Screening for fibrinolytic activity in eight viperid venoms, Com. Biochem. Physiol. 124(C), 91-98
  28. Sanchez, E. F., C. I. Santos, A. Magalhaes, C. R. Diniz, S. Figueiredo, J. Giloy, and M. Richardson (2000), Isolation of a proteinase with plasminogen-activating activity from Lachesis muta muta (bushmaster) snake venom, Achives of Biochemistry and Biophysics. 378(1), 131-141 https://doi.org/10.1006/abbi.2000.1781
  29. Trummal, K., H. Vija, J. Subbi, and J. Siigur (2000), MALDI-TOF mass spectrometry analysis of substrate specificity of lebetase, a direct-acting fibrinolytic metalloproteinase from Vipera lebetina snake venom, Biochimica et Biochemica Acta. 1476, 331-336 https://doi.org/10.1016/S0167-4838(99)00236-8
  30. Swenson, S., L. R. Bush, and F. S. Markland (2000), Chimeric derivative of fibrolase, a fibrinolytic enzyme from southern copperhead venom, processes inhibitory activity on platelet aggregation, Achieves Biochemistry and Biophysics 384(2), 227-237 https://doi.org/10.1006/abbi.2000.2129
  31. Koh, Y. S., K-H. Chung, and D. S. Kim (2001), Bionchemical characterization of a thrombin-like enzyme and a fibrinolytic serine protease from snake (Agkistrodon saxatilis) venom, Toxicon. 39, 555-560 https://doi.org/10.1016/S0041-0101(00)00169-0
  32. Xiuxia, L., C. Jiashu, Z. Yingna, Q. Pengxin, and Y. Grangmei (2001), Purification and biochemical characterization of F IIa a fibrinolytic enzyme from Agkistrodon acutusvenom, Toxicon. 39, 1133-1139 https://doi.org/10.1016/S0041-0101(00)00206-3
  33. Guo, Y. W., T. Y. Chang, K-T. Lin, H-W. Liu, K-C. Shih, and S-H. Cheng (2001), Cloning and functional expression of the mucrosobin protein, a $\beta$-fibrinogenase of Trimeresurus mucrosquaqmatus (Taiwan Habu), Protein Expression and Purification 23, 483-490 https://doi.org/10.1006/prep.2001.1531
  34. Jin, Y., Q. M. Lu, J. F. Wei, D. S. Li, W. Y. Wang, and Y. L. Xiong (2001), Purification and characterization of jerdofibrase, a serine protease from the venom of Trimeresurus jerdonii snake, Toxicon. 39, 1203-1210 https://doi.org/10.1016/S0041-0101(00)00261-0
  35. Chudzinski-Tavassi, A. M., E. M. Kelen, A. P. Paula-Rosa, S. Loyau, C. A. Sampaio, C. Bon, and E. Angles-Cano (1998), Fibrino(geno)lytic properties of purified hementerin, a metallo-proteinase from the leech Haementeria depressa, Thromb. Haemost. 80, 155-160 https://doi.org/10.1055/s-0037-1615155
  36. Hrzenjak, T., M. Popovic, T. Bozic, M. Grdisa, D. Kobrehel, and L. Tiska-Rudman (1998), Fibrinolytic and anticoagulative activities from the earthworm Eisenia foetida,. Comp. Biochem. Physiol B. 119, 825-832 https://doi.org/10.1016/S0305-0491(98)00060-1
  37. Fan, Q., C. Wu, L. Li, R. Fan, C. Wu, Q. Hou, and R. He (2001) Some features of intestinal absorption of intact fibrinolytic enzyme III-1 from Lumbricus rubellus, Biochimica et Biochemica Acta. 1526, 286-292 https://doi.org/10.1016/S0304-4165(01)00140-4
  38. Jean, O-H., W-J. Moon, and D-S. Kim (1995), An anticoagulant/fibrinolytic protease from Lumbricus rubellus, J. Biochem. Mol. Biol. 28(2), 138-142
  39. Nakajima, N., H. Mihara, and H. Sumi (1993), Characterization of potent fibrinolytic enzymes in earthwarm, Lumbricus rubellus, Biosci. Biotech. Biochem. 57(10), 1726-1730 https://doi.org/10.1271/bbb.57.1726
  40. Mihara, H., N. Nakajima, and H. Sumi (1993), Characterization of potent fibrinolytic enzymes in earthworm, Lumbricus rubellus, Biosci. Biotech. Biochem. 57, 1730
  41. Mihara, H., H. Sumi, T. Yoneta, H. Mizumoto, R. Ikeda, M. Seiki, and M. Maruyama (1991), A novel fibrinolytic enzyme extracted from the earthworm, Lumbricus rebellus, Japanese journal of Physiology 41, 461 https://doi.org/10.2170/jjphysiol.41.461
  42. Kim, Y. T., W. K. Kim, and H. S. Oh (1995), Screening and Identification of the Fibrinolytic Bacterial Strain from ChungKooK-jang, Kor. J. Microbiol. Biotechnol. 2(3), 1-5
  43. Kim, H. K., G. T. Kim, D. K. Kim, W. A. Choi, S. H. Park, Y. K. Jeong, and I. S. Kong (1997), Purification and Characterization of a novel Fibrinolytic Enzyme from Bacillus sp. KA38 Originated from Fermented Fish, J. Fermentation and Bioengineering 84(4), 307-312 https://doi.org/10.1016/S0922-338X(97)89249-5
  44. Fujita, M., K. NoMura, K. Hong, Y. Ito, A. Asada, and S. Nishimura (1993), Purification and characterization of a strong fibrinolytic enzyme (nattokinase) in the vegetable cheese natto, a popular soybean fermented food in Japan, Biochem. Biophys. Res. Commun. 197, 1340-1347 https://doi.org/10.1006/bbrc.1993.2624
  45. Sumi, H., H. Hamada, H. Tsushima, H. Mihara, H., and H. A. Muraki (1987), A nobel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto: a typical and popular soybean food in the Japanese diet, Experientia. 43, 1110-1111 https://doi.org/10.1007/BF01956052
  46. Nakajima, N., N. Taya, and H. Sumi (1993), Potent fibrinolytic enzyme from the lysate of Katsuwonus pelamis digestive tract (shiokara): purification and characterization, Biosci. Biotech. Biochem. 57(9), 1604-1605 https://doi.org/10.1271/bbb.57.1604
  47. Sumi, H., N. Nakajima, and C. Yatagai (1995), A unique strong fibrinolytic enzyme (katsuwokinase) in skipjack Shiokara, a Japanes traditonalmfermented food, Comp. Biochem. Physiol B. 112(3), 543-547 https://doi.org/10.1016/0305-0491(95)00100-X
  48. Matsubara, K., H. Sumi, K. Hori, and K. Miyazawa (1998), Purification and characterization of two fibrinolytic enzymes from a marine green alga, Codium intricatum, Comparative Biochemistry and Physiology 119B(1), 177-181
  49. Matsubara, K., K. Hori, Y. Matsuura, and K, Miyazawa (1999), A fibrinolytic enzyme from a marine green alga, Codium latum, Phytochemistry 52, 993-999 https://doi.org/10.1016/S0031-9422(99)00356-8
  50. Matsubara, K., K. Hori, Y. Matsuura, and K. Miyazawa (2000), Purification and characterization of a fibrinolytic enzyme and identification of fibrinogen clotting enzyme in a marine green alga, Codium divaricatum, Comparative Biochemistry and Physiology 125, 137-143 https://doi.org/10.1016/S0305-0491(99)00161-3
  51. Kim, J. H. (2000), Purification and Characterization of Fibrinolytic enzyme from Tricholoma saponaceum, The korean Society of Mycology 28(1), 60-65
  52. Kim, J. H. and Y. S. Kim (1998), Purification and Characterization of Fibrinolytic enzyme from Armillariella mellea, The korean Society of Mycology 26(4), 583-588
  53. Patton, L. M., D. Pretzer, B. S. Schulteis, K. D. Saggart, K. D. Tennant, and N. K. Ahmed (1993), J. Biochem. Biophysi. Met. 27(1), 11-23 https://doi.org/10.1016/0165-022X(93)90064-U
  54. Astrup, T. and S. Mullertz (1952), The fibrin agarose plate method for estimating fibrinolytic activity, Arch. Biochem. Biophys. 40, 346-351 https://doi.org/10.1016/0003-9861(52)90121-5
  55. Bradford, M. M. (1976), A Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  56. Laemmli, U. K. (1970), Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227, 680-685 https://doi.org/10.1038/227680a0