Cloning and Characterization of a Gene Cluster for Cyclohexanone Oxidation in Rhodococcus sp. TK6

  • Choi Jun-Ho (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Kim Tae-Kang (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Kim Young-Mog (Institute of Agricultural Science & Technology, Kyungpook National University) ;
  • Kim Won-Chan (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Park Kunbawui (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Rhee In-Koo (Department of Agricultural Chemistry, Kyungpook National University)
  • Published : 2006.04.01

Abstract

A gene cluster for cyclohexanone oxidation was cloned from Rhodococcus sp. TK6, which is capable of growth on cyclohexanone as the sole carbon source. The 9,185-bp DNA sequence analysis revealed seven potential open reading frames (ORFs), designated as ssd-chnR-chnD-chnC-chnB-chnE-partial pcd. The chnBCDE genes encode enzymes for the four-step conversion of cyclohexanone to adipic acid, catalyzed by cyclohexanone monooxygenase (ChnB), $\varepsilon-caprolactone$ hydrolase (ChnC), 6-hydroxyhexanoate dehydrogenase (ChnD), and 6-oxohexanoate dehydrogenase (ChnE). Furthermore, the presence of a regulatory element in the downstream region of the chnD gene supports the notion that chnR is a putative regulatory gene. Among them, the activity of ChnB was confirmed and characterized, following their expression and purification in Escherichia coli harboring the modified chnB gene (chnB gene with 6 successive codons for His at the 3' terminus).

Keywords

References

  1. Ahn, T.-S., G.-H. Lee, and H.-G. Song. 2005. Biodegradation of phenanthrene by psychrotrophic bacteria from lake baikal. J. Microbiol. Biotechnol. 15: 1135-1139
  2. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389- 3402 https://doi.org/10.1093/nar/25.17.3389
  3. Baek, K.-H., H.-S. Kim, S.-H. Moon, I.-S. Lee, H.-M. Oh, and B.-D. Yoon. 2004. Effects of soil types on the biodegradation of crude oil by Nocardia sp. H17-1. J. Microbiol. Biotechnol. 14: 901-905 https://doi.org/10.1159/000076921
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248- 254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Branchaud, B. P. and C. T. Walsh. 1985. Functional group diversity in enzymatic oxygenation reaction catalyzed by bacterial flavin-containing cyclohexanone oxygenase. J. Am. Chem. Soc. 107: 2153-2161 https://doi.org/10.1021/ja00293a054
  6. Brzostowicz, P. C., D. M. Walters, S. M. Thomas, V. Nagarajan, and P. E. Rouvière. 2003. mRNA differential display in a microbial enrichment culture: Simultaneous identification of three cyclohexanone monooxygenases from three species. Appl. Envir. Microbiol. 69: 334- 342 https://doi.org/10.1128/AEM.69.1.334-342.2003
  7. Brzostowicz, P. C., K. L. Gibson, S. M. Thomas, M. S. Blasko, and P. E. Rouviere. 2000. Simultaneous identification of two cyclohexanone oxidation genes from an environmental Brevibacterium isolate using mRNA differential display. J. Bacteriol. 182: 4241-4248 https://doi.org/10.1128/JB.182.15.4241-4248.2000
  8. Brzostowicz, P. C., M. S. Blasko, and P. E. Rouviere. 2002. Identification of two gene clusters involved in cyclohexanone oxidation in Brevibacterium epidermidis strain HCU. Appl. Microbiol. Biotechnol. 58: 781-789 https://doi.org/10.1007/s00253-002-0968-x
  9. Chen, Y. C., O. P. Peoples, and C. T. Walsh. 1988. Acinetobacter cyclohexanone monooxygenase: Gene cloning and sequence determination. J. Bacteriol. 170: 781- 789 https://doi.org/10.1128/jb.170.2.781-789.1988
  10. Cheng, Q., S. M. Thomas, K. Kostichka, J. R. Valentine, and V. Nagarajan. 2000. Genetic analysis of a gene cluster for cyclohexanol oxidation in Acinetobacter sp. strain SE19 by in vitro transposition. J. Bacteriol. 182: 4744- 4751 https://doi.org/10.1128/JB.182.17.4744-4751.2000
  11. Cho, T., Y. Takahashi, and S. Yamamota. 1991. Manufacture of adipic acid by biotechnology. Bio. Industry 8: 671- 678
  12. Choi, J. H., T. K. Kim, Y. M. Kim, W. C. Kim, and I. K. Rhee. 2005. Cloning and characterization of a short chain alcohol dehydrogenase gene for cyclohexanol oxidation in Rhodococcus sp. TK6. J. Microbiol. Biotechnol. 15: 1186-1196
  13. Choi, K. K., C. H. Park, S. Y. Kim, W. S. Lyoo, S. H. Lee, and J. W. Lee. 2004. Polyvinyl alcohol degradation by Microbacterium barkeri KCCM 10507 and Paenibacillus amylolyticus KCCM 10508 in dyeing wastewater. J. Microbiol. Biotechnol. 14: 1009-1013
  14. Donoghue, N. A. and P. W. Trudgill. 1975. The metabolism of cyclohexanol by Acinetobacter NCIB 9871. Eur. J. Biochem. 60: 1-7 https://doi.org/10.1111/j.1432-1033.1975.tb20968.x
  15. Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmid. J. Mol. Biol. 166: 557-580 https://doi.org/10.1016/S0022-2836(83)80284-8
  16. Hopwood, D. A., M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, D. J. Lydiate, C. P. Smith, and H. Schrempf. 1985. Genetic Manipulation of Streptomyces - A Laboratory Manual. The John Innes Foundation, Norwich, England
  17. Iwaki, H., Y. Hasegawa, M. Teraoka, T. Tokuyama, H. Bergeron, and P. C. K. Lau. 1999. Identification of a transcriptional activator (ChnR) and a 6-oxohexanoate dehydrogenase (ChnE) in the cyclohexanol catabolic pathway in Acinetobacter sp. strain NCIMB 9871 and localization of the genes that encode them. Appl. Environ. Microbiol. 65: 5158-5162
  18. Kamerbeek, N. M., M. J. H. Moonen, J. G. M. van der Ven, W. J. H. van Berkel, M. W. Fraaije, and D. B. Janssen. 2001. 4-Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB: A novel flavoprotein catalyzing Baeyer- Villiger oxidation of aromatic compounds. Eur. J. Biochem. 268: 2547-2557 https://doi.org/10.1046/j.1432-1327.2001.02137.x
  19. Khalameyzer, V., I. Fisher, U. T. Bornscheuer, and J. Altenbuchner. 1999. Screening, nucleotide sequence, and biochemical characterization of an esterase from Pseudomonas fluorescens with high activity towards lactones. Appl. Environ. Microbiol. 65: 477-482
  20. Kim, Y. M., K. Park, J. H. Choi, J. E. Kim, and I. K. Rhee. 2004. Biotransformation of the fungicide chlorothalonil by bacterial glutathione S-transferase. J. Microbiol. Biotechnol. 14: 938-943
  21. Kim, T. K. and I. K. Rhee. 1999. Cyclohexanol dehydrogenase isozymes produced by Rhodococcus sp. TK6. Kor. J. Appl. Microbiol. Biotechnol. 27: 124-128
  22. Kim, T. K. and I. K. Rhee. 1999. Isolation and characterization of cyclohexanol utilizing bacteria. Kor. J. Appl. Microbiol. Biotechnol. 27: 107-112
  23. Kim, T. K., J. H. Choi, and I. K. Rhee. 2002. Purification and characterization of a cyclohexanol dehydrogenase from Rhodococcus sp. TK6. J. Microbiol. Biotechnol. 12: 39-45 https://doi.org/10.1159/000047825
  24. Min, G. S. and J. R. Powell. 1998. Long-distance genome walking using the long and accurate polymerase chain reaction. Biotechnique 24: 398-400
  25. Norris, D. B. and P. W. Trudgill. 1976. Multiple forms of cyclohexanone oxygenase from Nocardia globerula CL1. Eur. J. Biochem. 63: 193-198 https://doi.org/10.1111/j.1432-1033.1976.tb10221.x
  26. Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., U.S.A
  27. Sanger, F. S., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467
  28. Tanaka, H., H. Obata, T. Tokuyama, T. Ueno, F. Yoshizako, and A. Nishmura. 1977. Metabolism of cyclohexanol by Pseudomonas species. Hakkokogaku Kaishi 55: 62-67
  29. Trower, M. K., R. M. Buckland, R. Higgins, and M. Griffin. 1985. Isolation and characterization of cyclohexanemetabolizing Xanthobacter sp. Appl. Environ. Microbiol. 49: 1282-1289
  30. Van Beilen, J. B., F. Mourlane, M. A. Seeger, J. L. Z. Kovac, T. H. Smits, U. Fritsche, and B. Witholt. 2003. Cloning of Baeyer-Villiger monooxygenases from Comamonas, Xanthobacter and Rhodococcus using polymerase chain reaction with highly degenerate primers. Environ. Microbiol. 5: 174-182 https://doi.org/10.1046/j.1462-2920.2003.00401.x
  31. Vieira, J. and J. Messing. 1987. Production of single-stranded plasmid DNA. Methods Enzymol. 153: 3
  32. Willetts, A. 1997. Structural studies and synthetic applications of Baeyer-Villiger monooxygenases. Trends Biotechnol. 15: 55-62 https://doi.org/10.1016/S0167-7799(97)84204-7