Enhanced Production of Epothilones by Carbon Sources in Sorangium cellulosum

  • Park Sang-Woo (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Choi Sue-Hyung (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Yoon Yeo-Joon (Division of Nano Science, Ewha Women's University) ;
  • Lee Dong-Hyun (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Kim Duk-Joon (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Kim Ji-Heung (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Lee Young-Kwan (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Choi Guang-Jin (Department of Pharmaceutical Engineering, Inje University) ;
  • Yeom Ick-Tae (Department of Civil and Environmental Engineering, Sungkyunkwan University) ;
  • Sim Sang-Jun (Department of Chemical Engineering, Sungkyunkwan University)
  • Published : 2006.04.01

Abstract

To improve epothilones production and the ratio of epothilone B/A, carbon sources were investigated in flask culture of Sorangium cellulosum. Depending on the initial concentration, starch significantly enhanced cell growth, but the maximum epothilones productivity and the maximum epothilones production (0.3 mg/l day and 2.6 mg/l at 15 g/l starch, respectively) were relatively low compared with cell growth. On the other hand, addition of glycerol did not stimulate cell growth, but epothilone production was increased from 2.81 mg/l to 7.59 mg/l. Addition of glycerol to culture medium resulted in more significant enhancement of the production of epothilone A, whereas epothilone B levels were relatively constant. Furthermore, when sodium propionate was added as a precursor of methylmalonyl-CoA, it resulted in increase of both total epothilones production and epothilone B/A resolution. Maximum epothilone A and B concentrations reached 10.9 mg/l and 8.58 mg/l, respectively, at 5 mM sodium propionate.

Keywords

References

  1. Bollag, D. M., P. A. McQueney, J. Zhu, O. Hensens, L. Koupal, J. Liesch, M. Goetz, E. Lazarides, and C. M. Woods. 1995. Epothilones, a new class of microtubulestabilizing agents with a taxol-like mechanism of action. Cancer Res. 55: 2325-2333
  2. Chou, T. C., X. G. Zhang, A. Balog, D. S. Su, D. Meng, K. Savin, J. R. Bertino, and S. J. Danishefsky. 1998. Desoxyepothilone B: An efficacious microtubule-targeted antitumor agent with a promising in vivo profile relative to epothilone B. Proc. Natl. Acad. Sci. USA 95: 9642-9647
  3. Frykman, S., H. Tsuruta, J. Lau, R. Regentin, S. Ou, C. Reeves, J. Carney, D. Santi, and P. Licari. 2002. Modulation of epothilone analog production through media design. J. Ind. Microbiol. Biotechnol. 28: 17-20 https://doi.org/10.1038/sj/jim/7000209
  4. Frykman, S., H. Tsuruta, C. Starks, R. Regentin, J. Carney, and P. Licari. 2002. Control of secondary metabolite congener distributions via modulation of the dissolved oxygen tension. Biotechnol. Prog. 18: 913-920 https://doi.org/10.1021/bp0255311
  5. Gerth, K., N. Bedorf, G. Höfle, H. Irschik, and H. Reichenbach. 1996. Epothilones A and B: Antifungal and cytotoxic compounds from Sorangium cellulosum (myxobacteria) - Production, physico-chemical, and biological properties. J. Antibiot. 49: 560-563 https://doi.org/10.7164/antibiotics.49.560
  6. Gerth, K., H. Steinmetz, G. Höfle, and H. Reichenbach. 2000. Studies on the biosynthesis of epothilones: The biosynthetic origin of the carbon skeleton. J. Antibiot. 53: 1373-1377 https://doi.org/10.7164/antibiotics.53.1373
  7. Gerth, K., H. Steinmetz, G. Hofle, and H. Reichenbach. 2001. Studies on the biosynthesis of epothilones: The PKS and epothilone C/D monoxygenase. J. Antibiot. 54: 144- 148 https://doi.org/10.7164/antibiotics.54.144
  8. Hong, J. S. J., C. Y. Choi, and Y. J. Yoon. 2003. Premature release of polyketide intermediates by hybrid polyketide synthase in Amycolatopsis mediterranei S699. J. Microbiol. Biotechnol. 13: 613-619
  9. Janice, L., S. Frykman, R. Regentin, S. Ou, H. Tsuruta, and P. Licari. 2002. Optimizing the heterologous production of epothilone D in Myxococcus xanthus. Biotechnol. Bioeng. 78: 280-288 https://doi.org/10.1002/bit.10202
  10. Julien, B., S. Shah, R. Ziermann, R. Goldman, and L. Khosla. 2000. Isolation and characterization of the epothilone biosynthetic gene cluster from Sorangium cellulosum. Gene 249: 153-160 https://doi.org/10.1016/S0378-1119(00)00149-9
  11. Kim, C. Y., H. Y. Park, and E. S. Kim. 2003. Heterologous expression of hybrid type polyketide synthase system in Streptomyces species. J. Microbiol. Biotechnol. 13: 819- 822
  12. Kimura, Y., R. Sato, K. Mimura, and M. Sato. 1997. Propionyl coenzyme A carboxylase is required for development of Myxococcus xanthus. J. Bacteriol. 179: 7098-7102 https://doi.org/10.1128/jb.179.22.7098-7102.1997
  13. Kimura, Y., T. Kojyo, I. Kimura, and M. Sato. 1998. Propionyl-CoA carboxylase of Myxococcus xanthus: Catalytic properties and function in developing cells. Arch. Microbiol. 170: 179-184 https://doi.org/10.1007/s002030050631
  14. Kowalski, R. J., P. Giannakakou, and E. Hamel. 1997. Activities of the microtubule-stabilizing agents epothilones A and B with purified tubulin and in cells resistant to paclitaxel. J. Biol. Chem. 272: 2534-2541 https://doi.org/10.1074/jbc.272.4.2534
  15. Pfeifer, B. A. and C. Khosla. 2001. Biosynthesis of polyketide in heterologous hosts. Microbiol. Molec. Biol. 65: 106-118 https://doi.org/10.1128/MMBR.65.1.106-118.2001
  16. Regentin, R., S. Frykman, J. Lau, and H. Tsuruta. 2003. Nutrient regulation of epothilone biosynthesis in heterologous and native production strains. Appl. Microbiol. Biotechnol. 61: 451-435 https://doi.org/10.1007/s00253-003-1263-1
  17. Shigeru, C., H. Izawa, H. Nishihara, and Y. Takamura. 1998. Change in size of intracellular pools coenzyme A and its thioesters in Escherichia coli K-12 cells to various carbon sources and stresses. Biosci. Biotechnol. Biochem. 62: 1122- 1128 https://doi.org/10.1271/bbb.62.1122
  18. Sylvie, S. A., G. Lauence, A. Jose, A. Kerstin, and S. Philippe. 2001. Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures. J. Bacteriol. 183: 1748-1754 https://doi.org/10.1128/JB.183.5.1748-1754.2001
  19. Walsh, C. T., S. E. O'Connor, T. L. Schneider. 2003. Polyketide-nonribosomal peptide epothilone antitumor agents: The EpoA, B, C subunits. J. Ind. Microbiol. Biotechnol. 30: 448-455 https://doi.org/10.1007/s10295-003-0044-2