Deposition of Cermet Solar Selective Coatings for High Temperature Applications

고온용 서밋 태양선택흡수막의 증착

  • Published : 2006.03.31

Abstract

Cr-CrO cermet solar selective coatings with a double cermets layer film structure were prepared using a special direct current (dc) magnetron sputtering technology. The typical films structures from surface to bottom substrate were measured to be an $Al_2O_3$ anti-reflection layer on a double Cr-CrO cermet layer on an Al metal infrared reflection layer. Optical properties of optimized Cr-CrO cermet solar selective coating were absorptance (${\alpha}$) = 0.95 and emittance (${\varepsilon}$) = 0.10 ($100^{\circ}C$). Atomic force microscopy (AFM) image showed that Cr-CrO cermet film was very smooth and their grain size was also very small The results of thermal stability test showed that the Cr-CrO cermet solar selective coatings were stable for use at temperature of $400^{\circ}C$.

Keywords

References

  1. K. D. Lee, W. C. Jung and J. K. Kim, Sol. Energy Mater. Sol. Cells 62, 63 (2000) https://doi.org/10.1016/S0927-0248(99)00136-1
  2. H. Tabor, in Transactions of the Conference on the Use of Solar Energy, The Scientific Basis, Tucson, October 31 - November 1, 1995 (University of Arizona Press, Tucsion, AZ ,1958), 2, Part lA, p. 24 ; Bull
  3. J. T. Gier and of R. V. Dunkle, 1955 in Transactions of the Conference on the Use cf Solar Energy, The Scientific Basis, Tucson, October 31 - November 1, 1955 (University of Arizona Press, Tucsion, AZ, 1958), 2, Part 1A, p. 41
  4. J. C. Fan and P. M. Zavracky, Appl. Phys. Letter. 29, 478 (1977)
  5. H. G. Graighead and R. A. Buhrman, J. Vac. Sci. Technol. 15, 269 (1978) https://doi.org/10.1116/1.569568
  6. D. R. McKenzie, Appl. Phys. Lett. 34, 25(1979) https://doi.org/10.1063/1.90585
  7. H. G. Graighead, R. Bartynski, R. A. Buhrman, L. Wojcik and A. J. Sievers, Sol. Energy Mater. 1, 105 (1979) https://doi.org/10.1016/0165-1633(79)90061-3
  8. D. M. Trotter and A. J. Sievers, Appl. Opt. 19, 711 (1980) https://doi.org/10.1364/AO.19.000711
  9. G. A. Nyberg and R. A. Buhrman, Appl. Phys. Lett. 40, 129 (1982) https://doi.org/10.1063/1.93012
  10. G. A. Niklasson and C. G. Granqvist, Appl. Phys. Lett. 41, 773 (1982) https://doi.org/10.1063/1.93673
  11. G. A. Niklasson and C. G. Granqvist, J. Mater. Sci. 18, 3475 (1983) https://doi.org/10.1007/BF00540724
  12. G. A. Niklasson and C. G. Granqvist, Appl. Phys. 55, 3382 (1984) https://doi.org/10.1063/1.333386
  13. J. A. Thornton and J. L. Lamb, Sol. Energy Mater. 9, 415 (1984) https://doi.org/10.1016/0165-1633(84)90016-9
  14. J. Blain, C. Le. Bel, R. G. Saint-Jacques and F. Rheault, J. Appl. Phys. 58, 490(1985) https://doi.org/10.1063/1.335651
  15. W. Pekruhn, L. K Thomas, I. Broser, A. Schroder and U. Wenning, Sol Energy Mater. 13, 199 (1986)
  16. J. Lafai, S. Berthier, C. Sella and T. K Vien, Vacuum 36, 125 (1986) https://doi.org/10.1016/0042-207X(86)90285-X
  17. L. K. Thomas and C. Tang, Sol Energy Mater. 18, 117 (1989) https://doi.org/10.1016/0165-1633(89)90046-4
  18. T. S. Sathiaraj, R. Thangaraj and O. P. Agnihotri, Sol Energy Mater. 18, 343 (1989) https://doi.org/10.1016/0165-1633(89)90059-2
  19. F. Garnich and E. Sailer, Sol Energy Mater. 20, 81 (1990) https://doi.org/10.1016/0165-1633(90)90019-W
  20. C. M. Lampert, Theory and Modeling of Solar Materials, in Solar Collectors, Energy Storage, and Materials, ed. by F. D. Winter (The MIT Press, Massachusetts, 1991), p.904
  21. G. A. Niklasson and C. G. Granqvist, Selective Solar Absorbing Surface Coatings: Optical Properties and Degradation, in Materials Science for Solar Energy Conversion Systems, edited by C. G. Granqvist (Pergamon Press, Oxford, 1991), p. 70
  22. Q.-c. Zhang, Sol Energy Mater. and Sol Cells 62, 63 (2000) https://doi.org/10.1016/S0927-0248(99)00136-1
  23. Q.-c. Zhang, M. S. Hadavi, K. D. Lee and T. G. Shen, j. Phys. D. Appl. Phys. 36, 723 (2003) https://doi.org/10.1088/0022-3727/36/6/315
  24. J. A. Duffie and W. A. Beckman, Solar Engineering of Thermal Processes, 2nd ed.(Wliey-Interscience, New York, 1991)