Repassivation Behavior of Ni Base Alloys in a Mild Alkaline Water at 300℃

  • 발행 : 2006.06.01

초록

KAERI(Korea Atomic Energy Research Institute) has developed a repassivation rate test system which can be operated at $300^{\circ}C$. It consists of an autoclave, three electrodes for an electrochemical test and a diamond scratch tip. All the electrodes are electrically insulated from the autoclave by using high temperature fittings. Reproducible repassivation curves of alloy 600 at 300 C were obtained. Repassivation rate of alloy 600 at pH 13 was slower than that of pH 10. Stress corrosion cracking test was carried as a function of the pH at a high temperature. At pH 10, alloy 600 showed a severe stress corrosion cracking(SCC), whereas it did not show a SCC at pH 7. From the viewpoint of a relationship between the current density and the charge density, a big difference was observed in the two solutions; the slope of pH 13 was steeper than that of pH 10. So the stress corrosion susceptibility at pH 13 seems to be higher than that of pH 10. The system would be a good tool to evaluate the SCC susceptibility of alloy 600 at a high temperature.

키워드

참고문헌

  1. T. P. Hoar and F. P. Ford, J. Electrochem. Soc, 120, 1013 (1973) https://doi.org/10.1149/1.2403619
  2. T. Zakroczmski and R. N. Parkins, Corros. Sci, 20, 723 (1980) https://doi.org/10.1016/0010-938X(80)90053-0
  3. R. M. Carranza and J. R. Galvele, Corros. Sci, 28, 233 (1988) https://doi.org/10.1016/0010-938X(88)90107-2
  4. S. Fujimoto and T. Shibata, Corros. Sci, 31, 643 (1990) https://doi.org/10.1016/0010-938X(90)90174-4
  5. G. T. Burstein and D. H. Davies, J. Electrochem. Soc, 128, 33 (1981) https://doi.org/10.1149/1.2127383
  6. G. T. Burstein and G. W. Ashley, Corrosion, 39, 241 (1983) https://doi.org/10.5006/1.3580843
  7. H. C. Brookes, J. W. Bayles, and F. J. Graham, J. Appl. Electrochem, 20, 223 (1990) https://doi.org/10.1007/BF01033598
  8. N. D. Tomashov and L. P. Vershinina, Electrochim. Acta, 15, 501 (1970) https://doi.org/10.1016/0013-4686(70)80001-9
  9. M. Keddam, R. Oltra, J. C. Colson, and A. Desestret, Corros. Sci, 23, 441 (1983) https://doi.org/10.1016/0010-938X(83)90072-0
  10. R Oltra, C. Gabrilli, F. Huet, and M. Keddam, Electrochim. Acta, 31, 1501 (1986)
  11. A. Alavi, C. D. Miller, and R. P. Wei, Corrosion, 43, 204 (1987) https://doi.org/10.5006/1.3583137
  12. R. P. Wei and A. Alavi, Scripta Met., 22, 969 (1988) https://doi.org/10.1016/S0036-9748(88)80085-1
  13. T. R. Beck, Corrosion, 30, 408 (1974) https://doi.org/10.5006/0010-9312-30.11.408
  14. T. R Beck, Electrochim. Acta, 30, 725 (1985) https://doi.org/10.1016/0013-4686(85)80119-5
  15. D. Boomer, R. Hermann, and A. Turnbull, Corros. Sci, 29, 1087 (1989) https://doi.org/10.1016/0010-938X(89)90046-2
  16. J. D. Kim and S. I. Pyun, Electrochim. Acta, 40, 1863 (1995) https://doi.org/10.1016/0013-4686(95)94180-3
  17. J. D. Kim and S. I. Pyun, Corros. Sci, 38, 1093 (1996) https://doi.org/10.1016/0010-938X(96)00004-2
  18. S. M. Moon and S. I. Pyun, J. Solid state Electrochem, 3, 104 (1999) https://doi.org/10.1007/s100080050135
  19. J. W. Tester and H. S. Issacs, J. Electrochem. Soc, 122, 1438 (1975) https://doi.org/10.1149/1.2134039
  20. J. C. Nelson, C. Kang, and A. Bronson, J. Electrochem. Soc, 136, 2948 (1989) https://doi.org/10.1149/1.2096379
  21. U. Steinsmo and H. S. Isaacs, J. Electrochem. Soc, 140, 643 (1993) https://doi.org/10.1149/1.2056137
  22. E. A. Cho and H. S. Kwon, J. Corrosion Sci. Soc. of Korea, 27, 144 (1998)
  23. K.A. Yeom E.W Cho, and H.S. Kwon, J. Corrosion Sci. Soc. of Korea, 26, (1997)
  24. R.W Staehle, Int'l steam generator conference hosted by Canadian Nuclear Soceity, Canada. August. (2002)