기계적 합금화법으로 제조된 $Mg_2Ni$-5mass% Nb 복합재료의 수소화 특성평가

Hydrogenation Properties of $Mg_2Ni$-5mass% Nb Composites by Mechanical Alloying

  • 석송 (충주대학교 신소재공학과/친환경 에너지 변환.저장소재 및 부품개발 연구센터) ;
  • 연규붕 (충주대학교 신소재공학과/친환경 에너지 변환.저장소재 및 부품개발 연구센터) ;
  • 김경일 (충주대학교 신소재공학과/친환경 에너지 변환.저장소재 및 부품개발 연구센터) ;
  • 유성웅 (충주대학교 신소재공학과/친환경 에너지 변환.저장소재 및 부품개발 연구센터) ;
  • 조경원 (충주대학교 신소재공학과/친환경 에너지 변환.저장소재 및 부품개발 연구센터) ;
  • 김기배 (한국과학기술연구원 재료연구부 신금속재료연구센터) ;
  • 홍태환 (충주대학교 신소재공학과/친환경 에너지 변환.저장소재 및 부품개발 연구센터)
  • Seok, Song (Dept. of Materials Science and Engineering/ReSEM, Chungju National University) ;
  • Yeon, Kyu-Boong (Dept. of Materials Science and Engineering/ReSEM, Chungju National University) ;
  • Kim, Kyoung-Il (Dept. of Materials Science and Engineering/ReSEM, Chungju National University) ;
  • Yoo, Sung-Woong (Dept. of Materials Science and Engineering/ReSEM, Chungju National University) ;
  • Cho, Young-Won (Dept. of Materials Science and Engineering/ReSEM, Chungju National University) ;
  • Kim, Ki-Bae (Advanced Metals Research Center, Division of Materials, Korea Institute of Science and Technology) ;
  • Hong, Tae-Whan (Dept. of Materials Science and Engineering/ReSEM, Chungju National University)
  • 발행 : 2006.12.15

초록

Mg and Mg-based alloys are promising hydrogen storage alloys for renewable clean energy applications. It is a lightweight and low cost material with high hydrogen storage capacity. However, commercial applications of the Mg hydride are currently hindered by its high absorption/desorption temperature, and very slow reaction kinetics. In this work, we aim to study the absorption properties of the $Mg_2Ni$-5mass% Nb composite prepared by mechanical alloying under hydrogen. The absorption capacity of the sample is found to be about 3.0 wt.% at T=573 K and P=1.0 MPa. The absorption characteristics observed have been compared with those of the prepared $Mg_2Ni$.

키워드

참고문헌

  1. E. Yu. Lvanov, I. G. Konstanchuk, A. A. Stepanov, V. V. Boldyrev, Dokl, Akad. Nauk SSSR 286, 1986, p. 385
  2. M. Y. Song, J. Materials Science Vol. 30, 1995, p. 1343 https://doi.org/10.1007/BF00356142
  3. K. J. Gross, P. Spatz, A. Zuttel, L. Schlapbach, J. Alloys Camp. Vol. 240, 1996, p. 206 https://doi.org/10.1016/0925-8388(96)02261-X
  4. A. Zaluska, L. Aaluski, J. O. Strom-Olsem, J. Alloys Camp. Vol. 288, 1999, p. 217 https://doi.org/10.1016/S0925-8388(99)00073-0
  5. J .Huot, J. F. Pelletier, G. Liang, M. Sutton, R. Schulz, J. Alloys Camp. Vol.348, 2003, p.319 https://doi.org/10.1016/S0925-8388(02)00839-3
  6. A. R. Yavri, J. F. R. de Castro, G. Heunen, G. Vaughan, J. Alloys Comp. Vol. 353, 2003, p. 246 https://doi.org/10.1016/S0925-8388(02)01199-4
  7. W. Oelerich, T. Klassen, R. Bormann, J. Alloys Camp. Vol. 315, 2001, P .237 https://doi.org/10.1016/S0925-8388(00)01284-6
  8. S. S. Sai Raman, D. J. Davidson, O. N. Srivastava, J. Alloys Comp. Vol. 292, 1999, p. 202 https://doi.org/10.1016/S0925-8388(99)00272-8
  9. G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, J. Alloys Comp. Vol. 292, 1999, p. 247 https://doi.org/10.1016/S0925-8388(99)00442-9