Production of Glucooligosaccharides and Mannitol from Leuconostoc mesenteroides B-742 Fermentation and its Separation from Byproducts

  • Chung Chang-Ho (Audubon Sugar Institute, Louisiana State University Agricultural Center)
  • Published : 2006.02.01

Abstract

Leuconostoc mesenteroides B-742 fermentations with maltose as an acceptor were tested for glucooligosaccharides and mannitol co-production. Leuconostoc oligosaccharides were produced that were oligomers with a size range of DP 2 to 7 and were primarily DP 3, 4, 5, and 6, containing mainly ${\alpha}-1,4$ and ${\alpha}-1,6$ linkages. Maltose was linked to the reducing end of the isomaltosyl residues. The $Ca^{2+}$ form of cation-exchange column could separate glucooligosaccharides from byproducts.

Keywords

References

  1. Chou, C.-C. and J.-W. How. 2000. Growth of bifidobacteria in soymilk and their survival in the fermented soymilk drink during storage. Int. J. Food Microbiol. 56: 113-121 https://doi.org/10.1016/S0168-1605(99)00201-9
  2. Chung, C.-H. and D. F. Day. 2002. Glucooligosaccharides from Leuconostoc mesenteroides B-742 (ATCC 13146): A potential prebiotic. J. Ind. Microbiol. Biotech. 29: 196-199 https://doi.org/10.1038/sj.jim.7000269
  3. Chung, C.-H. and D. F. Day. 2004. Efficacy of Leuconostoc mesenteroides (ATCC 13146) isomaltooligosaccharides as a poultry prebiotic. Poult. Sci. 83: 1302-1306 https://doi.org/10.1093/ps/83.8.1302
  4. Cote, G. L. and J. F. Robyt. 1983. The formation of ${\alpha}$-D-(1,3) branch linkages by an exocellular glucansucrase from L. mesenteriodes NRRL B-742. Carbohydr. Res. 119: 141- 156 https://doi.org/10.1016/0008-6215(83)84053-1
  5. Crittenden, R., A. Laitila, P. Forssell, J. Matto, M. Saarela, T. Mattila-Sandholm, and P. Myllarinen. 2001. Adhesion of bifidobacteria to granular starch and its implications in probiotic technologies. Appl. Environ. Micobiol. 67: 3469- 3475 https://doi.org/10.1128/AEM.67.8.3469-3475.2001
  6. Crittenden, R. G. 1999. Prebiotics, pp. 141-156. In G. W. Tannock (ed.), Probiotics: A Critical Review. Horizon Scientific Press, Wymondham, Norfolk, U.K
  7. Djouzi, Z. and C. Andrieux. 1997. Compared effects of three oligosaccharides on metabolism of intestinal microflora in rats inoculated with a human faecal flora. Br. J. Nutr. 78: 313-324 https://doi.org/10.1079/BJN19970149
  8. Djouzi, Z., C. Andrieux, V. Pelenc, F. Somarriba, F. Popot, F. Paul, P. Monsan, and O. Szylit. 1995. Degradation and fermentation of ${\alpha}$-gluco-oligosaccharides by bacterial strains from human colon: In vitro and in vivo studies in gnotobiotic rats. J. Appl. Bact. 79: 117-127 https://doi.org/10.1111/j.1365-2672.1995.tb00924.x
  9. Dols, M., M. Remaud-Simeon, R. M. Willemot, M. Vignon, and P. Mosan. 1998. Characterization of the different dextransucrase activities excreted in glucose, fructose or sucrose medium by Leuconostoc mesenteroides NRRL B- 1299. Appl. Environ. Microbiol. 64: 1298-1302
  10. Dols, M., W. Chraibi, M. Remaud-Simeon, N. D. Lindley, and P. Mosan. 1997. Growth and energetics of Leuconostoc mesenteroides NRRL B-1299 during metabolism of various sugars and their consequences for dextransucrase production. Appl. Environ. Microbiol. 63: 2159-2165
  11. Dominguez, H. and N. D. Lindley. 1996. Complete sucrose metabolism requires fructose phosphotransferase activity in Corynebacterium glutamicum to ensure phosphorylation of liberated fructose. Appl. Environ. Microbiol. 62: 3878- 3880
  12. Flickinger, E. A., B. W. Wolf, K. A. Garleb, J. Chow, G. J. Leyer, P. W. Johns, and G. C. Fahey, Jr. 2000. Glucose-based oligosaccharides exhibit different in vitro fermentation patterns and affect in vivo apparent nutrient digestibility and microbial populations in dogs. J. Nutr. 130: 1267-1273
  13. Gibson, G. R. and M. B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 125: 1401-1412
  14. Kim, M. S., S. O. Lee, H. J. Ryu, H. K. Kang, S. K. Yoo, S. S. Chang, D. W. Kim, D. Kim, and S. H. Kim. 2001. Synthesis of highly branched isomaltodextrin by acceptor reaction using dextransucrases from L. mesenteroides B- 742CB and B-512FMCM. Korean J. Biotechnol. Bioeng. 16: 200-206
  15. Lawford, G. R., A. Kligerman, and T. Willams. 1979. Dextran biosynthesis and dextransucrase production by continuous culture of Leuconostoc mesenteroides. Biotechnol. Bioeng. 21: 1121-1131 https://doi.org/10.1002/bit.260210704
  16. Loo, J. V., J. Cummings, N. Delzenne, H. Englyst, A. Franck, M. Hopkins, N. Kok, G. Macfarlane, D. Newton, M. Quigley, M. Roberfroid, T. V. Vliet, and E. Heuvel. 1999. Functional food properties of non-digestible oligosaccharides: A consensus report from the ENDO project (DGXII AIRII-CT94- 1095). Br. J. Nutr. 81: 121-132
  17. Paul, F., A. Lopez-Munguia, M. Remaud, V. Pelenc, and P. Monsan. 1992. Method for the production of ${\alpha}$-1,2 oligodextrans using Leuconostoc mesenteroides B-1299. U.S. Patent 5,141,858
  18. Remaud, M., F. Paul, and P. Monsan. 1992. Characterization of ${\alpha}$-1,3 branched oligosaccharides synthesized by acceptor reaction with the extracellular glucosyltransferases from L. mesenteriodes NRRL B-742. J. Carbohydr. Chem. 11: 359-378 https://doi.org/10.1080/07328309208017999
  19. Remaud-Simeon, M., A. Lopez-Munguia, V. Pelec, F. Paul, and P. Monsan. 1994. Production and use of glucosyltransferases from Leuconostoc mesenteroides NRRL B-1299 for the synthesis of oligosaccharides containing ${\alpha}$-1,2 linkages. Appl. Biochem. Biotechnol. 44: 101-117 https://doi.org/10.1007/BF02921648
  20. Robyt, J. F. 1986. Dextran, pp. 752-767. In H. F. Mark, N. M. Bikales, C. G. Overberger, and G. Menges (eds.), Encyclopedia of Polymer Science and Engineering Vol. 4. John WiIey & Sons, New York, NY, U.S.A
  21. Sakai, S. and K. Yamanaka. 1968. Crystalline D-mannitol dehydrogenase: $NAD^{+}$ oxidoreductase from L. mesenteroides. Biochim. Biophys. Acta 151: 684-686 https://doi.org/10.1016/0005-2744(68)90017-X
  22. Seymour, F., R. Knapp, C. Chen, A. Jeanes, and S. Bishop. 1979. Structural analysis of dextrans containing 4-O-${\alpha}$-D-glucosylated ${\alpha}$-D-glucopyranosyl residues at the branch points, by use of 13C-nuclear magnetic resonance spectroscopy and gas-liquid chromatography-mass spectrometry. Carbohydr. Res. 75: 275-294 https://doi.org/10.1016/S0008-6215(00)84647-9
  23. Tsuchiya, H. M., H. J. Koepsell, J. Corman, G. Bryant, M. O. Bogard, V. H. Feger, and R. W. Jackson. 1952. The effect of certain cultural factors on production of dextransucrase by Leuconostoc mesenteroides. J. Bacteriol. 64: 521-527
  24. Yoo, S.-K. 1997. The production of glucooligosaccharides by Leuconostoc mesenteroides ATCC 13146 and Lipomyces starkeyi ATCC 74054. Ph.D. thesis. Louisiana State University, Baton Rouge
  25. Yoo, S. K., D. Kim, and D. F. Day. 2001. Highly branched glucooligosaccharide and mannitol production by mixed culture fermentation of Leuconostoc mesenteroides and Lipomyces starkeyi. J. Microbiol. Biotechnol. 11: 700-703
  26. Yoo, S. K., D. Kim, and D. F. Day. 2001. Co-production of dextran and mannitol by Leuconostoc mesenteroides. J. Microbiol. Biotechnol. 11: 880-883