Use of Activated Soil to Bioaugment Degradation of Atrazine in Soils

토양 내의 Atrazine의 생물학적 분해 촉진을 위한 활성토의 이용

  • Kim, Sang-Jun (Dept. of Natural Sciences, Republic of Korea Naval Academy)
  • Published : 2006.12.31

Abstract

Effectiveness of activated soil containing directly enriched atrazine-degrading soil microorganisms as an inoculant to bioaugment degradation of atrazine in soils was investigated. A Wooster silt loam (Typic Fragiudalf) was spiked with atrazine at a rate of 4 mg/kg soil three successive times to create activated soil. Atrazine degradation was significantly enhanced (p < 0.05) after the first treatment. After the second treatment, there was an increase in the number, based on MPN, of microorganisms utilizing atrazine as a C- and N-source by 3 logs and 1 log of magnitude, respectively. Inoculation of typical agricultural soils collected from Ohio with activated soil at a rate as low as 0.5% reduced the extractable atrazine remaining in soils to the level below 2% of that initially recovered (initially added at a rate of 4 mg/kg soil) after 4 days. Inoculation at a higher rate was required to achieve the same result in soils with non-typical properties (pH of 4.5 or organic matter of 43% w/w). Activated soil was stable, in terms of atrazine degradation activity, at least up to 6 months when it was kept at low temperature (< $10^{\circ}C$) and moistened (water content above 15%). The results of this study indicate that microorganisms capable of degrading atrazine are relatively easily enriched in soil to create activated soil. Use of activated soil can be a practical option for bioremediation of contaminated soils.

토양내 atrazine 분해촉진을 위한 생물적 증진제로서의 토양내에서 직접증식된 Atrazine 분해 미생물을 함유하는 활성토의 효용성을 조사하였다. Atrazine 분해미생물을 증식시키기 위하여 Wooster silt loam을 4 mg/kg 농도의 atrazine으로 3회 연속처리하며 atrazine 분해 미생물 수와 atrazine 분해속도를 관찰한 결과, 1회 처리 후 atrazine 분해속도가 현저하게 증가하였고, 2회 처리 후 atrazine을 탄소원과 질소원으로 이용하는 미생물의 수가 각각 103, 101배 증가하였다. 증식된 미생물을 함유하는 이 활성토를 atrazine에 오염(초기농도4 mg/kg)된 Ohio의 전형적인 농지 토양에 0.5%비율로 접종하였을 때, 토양내atrazine 농도가 4일만에 초기농도의 2% 이하로 감소하였다. 비전형적인 토양(pH 4.5 또는 유기물함량 43%)에서 같은 효과를 얻기 위해서는 더 높은 비율의 접종이 필요하였다. 활성토는 저온($10^{\circ}C$ 이하) 습윤(수분함량 15%)한 상태에서 최소한 6개월간 안정하였다. 본 연구결과는 atrazine 분해미생물이 토양내에서 비교적 쉽게 증식되며, 이를 함유하는 활성토가 토양내에서의 atrazine 분해 촉진을 위한 접종제로 유용하게 이용될 수 있음을 보여준다.

Keywords

References

  1. Alexander, M., 1982, Most probable number method for microbial populations, In: Page, A.L., Miller, R.H., and Keeney, D.R. (eds.), Methods of Soil Analysis, 2nd ed., Part 2, American Society of Agronomy, Madison, WI, p. 815-820
  2. Assaf, N.A. and Turco, R.F., 1994, Accelerated biodegradation of atrazine by a microbial consortium is possible in culture and soil, Biodegradation, 5, 29-35
  3. Barriuso, E. and Houot, S., 1996, Rapid mineralization of the striazine ring of atrazine in soils in relation to soil management, Soil. Biol. Biochem, 28, 1341-1348 https://doi.org/10.1016/S0038-0717(96)00144-7
  4. Behki, R.M. and Khan, S.U., 1986, Degradation of Atrazine by Pseudomonas: N-dealkylation and dehalogenation of atrazine and its metabolites, J. Agric. Food. Chem, 34, 746-749 https://doi.org/10.1021/jf00070a039
  5. Behki, R.M., Topp, E., Dick, W., and Germon, P., 1993, Metabolism of the herbicide atrazine by Rhodococcus strains, Appl. Environ. Microbiol, 59, 1955-1959
  6. Bouquard, C., Ouazzani, J., Prome, J.-C., Michel-Briand, Y., and Plesiat, P., 1997, Dechlorination of atrazine by a Rhizobium sp. Isolate, Appl. Environ. Microbiol, 63, 862-866
  7. Buoyoucos, G.J., 1962, Hydrometer method improved for making particle-size analysis of soils, Agron. J., 53, 464-465
  8. Chung, K.M., Ro, K.S., and Roy, D., 1996, Fate and enhancement of atrazine biotransformation in anaerobic wetland sediment, Wat. Res., 30, 341-346 https://doi.org/10.1016/0043-1354(95)00164-6
  9. Combs, S.M. and Nathan, M.V., 1998, Recommended Chemical Soil Test Procedures for the North Central Region, NCR Publication No. 221, Missouri Agricultural Experiment Station, Columbia, MO, p. 53-58
  10. Donneley, P.K., Entry, J.A., and Crawford, D.L., 1993, Degradation of atrazine and 2,4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro, Appl. Environ. Microbiol., 59, 2642-2647
  11. Gan, J., Becker, R.L., Koskinen, W.C., and Buhler, D.D., 1996, Degradation of atrazine in two soils as a function of concentration, J. Environ. Qual., 25, 1064-1072 https://doi.org/10.2134/jeq1996.00472425002500050019x
  12. Gannon, E., 1992, Site remediation: environmental clean-up of fertilizer and agri-chemical dealer sites, 28 Iowa case studies, Iowa Natural Heritage Foundation, Des Moines, Iowa
  13. Goodrich, J.A., Lykins, Jr., B.W., and Clark, R.M., 1991, Drinking water from agriculturally contaminated groundwater, J. Environ. Qual., 20, 707-717 https://doi.org/10.2134/jeq1991.00472425002000040001x
  14. Grigg, B.C., Assaf, N.A., and Turco, R.F., 1997, Removal of atrazine contamination in soil and liquid systems using bioaugmentation, Pestic. Sci., 50, 211-220 https://doi.org/10.1002/(SICI)1096-9063(199707)50:3<211::AID-PS582>3.0.CO;2-0
  15. Gupta, G. and Baummer, III, J., 1996, Biodegradation of atrazine in soil using poultry litter, J. Hazard. Materials, 45, 185-192 https://doi.org/10.1016/0304-3894(95)00090-9
  16. Koelliker, J.K., Steichen, J.M., and Grosh, D.L., 1986, Pollution of ground water in Kansas, In: Erickson, L.E. (ed.), Proceedings of the Conference on Hazardous Waste Research, Kansas State University, Manhattan, KS
  17. Mandelbaum, R.T., Wackett, L.P., and Allan, D.L., 1993, Mineralization of the s-triazine ring of atrazine by stable bacterial mixed cultures, Appl. Environ. Microbiol., 59, 1695-1701
  18. McKeague, J.A.(ed.), 1978, Manual on soil sampling and methods of analysis, Can. Soc. Soil Sci.
  19. Mougin, C., Laugero, C., Asther, M., and Chaplain, V. 1997, Biotransformation of s-triazine herbicides and related degradation products in liquid cultures by the white rot fungus Phanerochaete chrysosporium, Pestic. Sci., 49, 169-177 https://doi.org/10.1002/(SICI)1096-9063(199702)49:2<169::AID-PS520>3.0.CO;2-0
  20. Newcombe, D.A. and Crowley, D.E., 1999, Bioremediation of atrazine-contaminated soil by repeated application of atrazine degrading bacteria, Appl. Microbiol. Biotechnol., 51, 877-882 https://doi.org/10.1007/s002530051477
  21. Rousseaux, S., Hartmann, A., Lagacherie, B., Piutti, S., Andreux, F., and Soulas, G., 2003, Inoculation of an atrazinedegrading strain, Chelatobacter heintzii Citl, in four different soils: effects of different inoculum densities. Chemosphere, 51, 569-576 https://doi.org/10.1016/S0045-6535(02)00810-X
  22. Runes, H.B., Jenkins, J.J., and Bottomley, P.J., 2001, Atrazine degradation by bioaugmented sediment from constructed wetlands, Appl. Microbiol. Biotechnol., 57, 427-432 https://doi.org/10.1007/s002530100792
  23. Schoen, S.R. and Winterlin, W.L., 1987, The effects of various factors and amendments on the degradation of pesticide mixtures, J. Environ. Sci. Health, Part B, 22, 347-377 https://doi.org/10.1080/03601238709372561
  24. Struthers, J.K., Jayachandran, K., and Moorman, T.B., 1998, Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioaugmentation of contaminated soil, Appl. Environ. Microbiol., 64, 3368-3375
  25. Thurman, E.M., Goolsby, D.A., Meyer, M.T., Mills, M.S., Pomes, M.L., and Kolpin D.W., 1992, A reconnaissance study of herbicides and their metabolites in surface water of the Midwestern United States using immunoassay and gas chromatography/mass spectrometry, Environ. Sci. Technol., 26, 2440-2447 https://doi.org/10.1021/es00036a016
  26. Topp, E., 2001, A comparison of three atrazine-degrading bacteria for soil bioremediation, Biol. Fert. Soils., 33, 529-534 https://doi.org/10.1007/s003740100371
  27. Torsvik, V., Goksoyr, J., and Daae, F.L., 1990, High diversity in DNA of soil bacteria, Appl. Environ. Microbiol., 56, 782-787
  28. Yanze Kontchou, C. and Gschwind, N., 1996, Mineralization of the herbicide atrazine in soil inoculated with a Pseudomonas strain, J. Agric. Food Chem., 43, 2291-2294 https://doi.org/10.1021/jf00056a061