Competition between Phase Separation and Crystallization in a PCL/PEG Polymer Blend Captured by Synchronized SAXS, WAXS, and DSC

  • Chuang Wei-Tsung (National Synchrotron Radiation Research Center) ;
  • Jeng U-Ser (National Synchrotron Radiation Research Center) ;
  • Sheu Hwo-Shuenn (National Synchrotron Radiation Research Center) ;
  • Hong Po-Da (Department of Polymer Engineering, National Taiwan University of Science and Technology)
  • Published : 2006.02.01

Abstract

We conducted simultaneous, small-angle, X-ray scattering/differential scanning calorimetry (SAXS/DSC) and simultaneous, wide-angle, X-ray scattering (WAXS)/DSC measurements for a polymer blend of poly($\varepsilon$-caprolactone)/poly(ethylene glycol)(PCL/PEG). The time-dependent SAXS/DSC and WAXS/DSC results, measured while the system was quenched below the melting temperature of PCL from a melting state, revealed the competitive behavior between liquid-liquid phase separation and crystallization in the polymer blend. The time-dependent structural evolution extracted from the SAXS/WAXS/DSC results can be characterized by the following four stages in the PCL crystallization process: the induction (I), nucleation (II), growth (III), and late (IV) stages. The influence of the liquid-liquid phase separation on the crystallization of PCL was also observed by phase-contrast microscope and polarized microscope with 1/4$\lambda$ compensator.

Keywords

References

  1. T. P. Russel and J. T. Koberstein, J. Polym. Sci., 23, 1109 (1985)
  2. W. Bras, G. E. Derbyshire, A. Devine, S. M. Clark, J. Cooker, B. E. Komanschek, and A. J. Ryan, J. Appl. Cryst., 28, 26 (1995) https://doi.org/10.1107/S0021889894008320
  3. D. Lexa, Rev. Sci. Instrum., 70, 2242 (1999) https://doi.org/10.1063/1.1149745
  4. K. N. Kruger and H. G. Zachmann, Macromolecules, 26, 5202 (1993) https://doi.org/10.1021/ma00071a035
  5. S. Okamoto, K. Yamamoto, K. nomura, S. Hara, I. Akiba, K. Sakurai, A. Koyama, M. Nomura, and S. Sakurai, J. Macromol. Sci. Phys., 43, 279 (2004) https://doi.org/10.1081/MB-120028015
  6. C. Wutz, M. Bark, J. Cronauer, R. Dohrmann, and H. G. Zachmann, Rev. Sci. Instrum., 66, 1303 (1995) https://doi.org/10.1063/1.1145959
  7. I. Sics, A. Nogales, T. A. Ezquerra, Z. Denchev, and F. J. Balta-Calleja, Rev. Sci. Instrum., 71, 1733 (2000) https://doi.org/10.1063/1.1150528
  8. G. K. Bryant, H. F. Gleeson, A. J. Ryan, J. P. A. Fairclough, D. Bogg, J. G. P. Goossens, and W. Bras, Rev. Sci. Instrum., 69, 2114 (1998) https://doi.org/10.1063/1.1148907
  9. S. Naylor, W. Bras, G. Derbyshire, G. R. Mant, D. Bogg, and A. J. Ryan, Nucl. Instrum. Methods., B97, 253 (1995) https://doi.org/10.1016/0168-583X(94)00373-4
  10. N. J. Terrill, P. A. Fairclough, E. Towns-Ansrews, B. U. Komanschek, R. J. Young, and A. J. Ryan, Polymer, 39, 2381 (1998) https://doi.org/10.1016/S0032-3861(97)00547-8
  11. Lopez-Cabarcos, B. S. Hsiao, and F. J. Balta-Calleja, Phys. Rev. E, 54, 989 (1996) https://doi.org/10.1103/PhysRevE.54.989
  12. K. Tashiro, S. Kariyo, A. Nishimori, T. Fujii, S. Saragai, S. Nakamoto, T. Kawaguchi, A. Matsumoto, and O. Rangsiman, J. Polym. Sci.; Part B: Polym. Phys., 40, 495 (2002) https://doi.org/10.1002/polb.10112
  13. M. Imai, K. Kaji, and T. Kanaya, Phys. Rev. Lett., 71, 4162 (1993) https://doi.org/10.1103/PhysRevLett.71.4162
  14. P. D. Olmsted, W. C. K. Poon, T. C. B. McLeish, N. J. Terrill, and A. J. Ryan, Phys. Rev. Lett., 81, 373 (1998) https://doi.org/10.1103/PhysRevLett.81.373
  15. H. Tanaka and T. Nishi, Phys. Rev. Lett., 55, 1102 (1985) https://doi.org/10.1103/PhysRevLett.55.1102
  16. N. Inaba, K. Sato, S. Suzuki, and T. Hashimoto, Macromolecules, 19, 1690 (1986). N. Inaba, T. Yamada, S. Suzuki, and T. Hashimoto, Macromolecules, 21, 407 (1988) https://doi.org/10.1021/ma00180a021
  17. J. K. Kim and B. K. Kim, J. Polym. Sci.; Part B: Polym. Phys., 37, 1991 (1999). J. K. Kim, B. K. Kim, and M. Park, J. Polym. Sci.; Part B: Polym. Phys., 38, 707 (2000) https://doi.org/10.1002/(SICI)1099-0488(20000301)38:5<707::AID-POLB8>3.0.CO;2-S
  18. H. Wang, K. Shimizu, H. Kim, E. K. Hobbie, Z. Wang, and C. C. Han, J. Chem. Phys., 116, 7311 (2002) https://doi.org/10.1063/1.1464537
  19. A. Keller and S. Z. D. Cheng, Polymer, 39, 4461 (1998) https://doi.org/10.1016/S0032-3861(97)10320-2
  20. W. T. Chuang, K. S. Shih, and P. D. Hong, J. Polym. Res., 12, 197 (2005) https://doi.org/10.1007/s10965-004-1868-9
  21. Y. H. Lai, Y. S. Sun, U. Jeng, Y. F. Song, K. L. Tsang, and K. S. Liang, Nucl. Inst. Meth. Phys. Res. B, 238, 205 (2005) https://doi.org/10.1016/j.nimb.2005.06.050
  22. G. R. Strobl and M. Schneider, J. Polym. Sci.; Part B: Polym. Phys., 18, 1343 (1980) https://doi.org/10.1002/pol.1980.180180614
  23. W. J. Ruland, J. Appl. Crystallogr., 4, 70 (1971) https://doi.org/10.1107/S0021889871006265
  24. P. Debye and A. M. Bueche, J. Appl. Phys., 20, 518 (1949) https://doi.org/10.1063/1.1698419
  25. P. Deby, H. R. Anderson, and H. Brumberger, J. Appl. Phys., 28, 679 (1957) https://doi.org/10.1063/1.1722830
  26. R. S. Stein, F. B. Khambatta, F. P. Warner, T. P. Russell, A. Escala, and E. Balizer, J. Polym. Sci., Polym. Symp., 3, 313 (1978)
  27. T. P. Russell, H. Ito, and G. D. Wignall, Macromolecules, 21, 1703 (1988) https://doi.org/10.1021/ma00184a029
  28. S. Nojima, K. Satoh, and T. Ashida, Macromolecules, 24, 942 (1991) https://doi.org/10.1021/ma00004a021
  29. H. Hu and D. L. Dorset, Macromolecules, 23, 4604 (1990) https://doi.org/10.1021/ma00223a017
  30. Z. G. Wang, B. S. Hsiao, E. B. Sirota, P. Agarwal, and S. Srinivas, Macromolecules, 33, 978 (2000) https://doi.org/10.1021/ma991468t
  31. G. Elsner, H. G. Zachmann, and J. R. Milch, Makromol. Chem., 182, 657 (1981) https://doi.org/10.1002/macp.1981.021820235
  32. B. S. Hsiao, G. Kenn, Corwin H, D. Q. Wu, and B. Chu, Polymer, 34, 3986 (1993) https://doi.org/10.1016/0032-3861(93)90658-W
  33. R. Verma, H. Maeand, and B. S. Hsiao, Macromolecules, 29, 7767 (1996) https://doi.org/10.1021/ma951727o
  34. H. Hama and K. Tashiro, Polymer, 44, 2159 (2003) https://doi.org/10.1016/S0032-3861(03)00093-4