Histochemical and Cytochemical Studies on the Secondary Xylem Formation during Grafting Process of Pinus thunbergii

접목 과정에서 형성된 신생 2차목부의 조직학적, 세포화학적 연구

  • Kim, Jong Sik (Department of Forest Products and Technology, College of Agriculture, Chonnam National University) ;
  • Lee, Kwang Ho (Department of Forest Products and Technology, College of Agriculture, Chonnam National University) ;
  • Kim, Yoon Soo (Department of Forest Products and Technology, College of Agriculture, Chonnam National University)
  • 김종식 (전남대학교 농업생명과학대학 임산공학과) ;
  • 이광호 (전남대학교 농업생명과학대학 임산공학과) ;
  • 김윤수 (전남대학교 농업생명과학대학 임산공학과)
  • Received : 2006.09.27
  • Accepted : 2006.10.19
  • Published : 2006.11.25

Abstract

Grafted tissues were investigated using various microscopic techniques. Pinus thunbergii was used as stock and scion and autografted by cleft graft method. Histochemically, grafting processes can be proceeded by four stages: 1) formation of necrotic layer, 2) proliferation of callus, 3) development of neo-cambium from callus, and 4) restoration of new vascular xylem. Necrotic la yer composed of pectin and lignin was gradually degraded during grafting process and disappeared when new union was formed between stock and scion. A large number of starch and lipid bodies in the cytoplasm were also gradually degraded during grafting process and disappeared at the grafting interface. Nucleus and plasmodesmata were not changed. Bubble-like callus was generated from all living parenchyma cells and from the callus. The tracheary elements differentiated from the callus had either reticulate or pit-like thickenings in the secondary walls with bordered pits. Secondary cell wall thickening occurred toward filing to the void parts between reticulated secondary wall. Tracheids formed in the secondary xylem were short with irregular wall thickness. New secondary xylem cells with swirled shapes, which developed in graft union were oriented horizontally and obliquely to axis of the stem.

접목 과정에서 형성되는 새로운 2차목부의 특징을 광학현미경 및 전자현미경적 차원에서 조사하고자 해송(Pinus thunbergii)을 사용하여 자가접목(autograft)을 실시하였다. 조직학적으로 접목은 괴사층의 형성, 치유조직(callus)의 형성 및 발달, 새로운 형성층의 분화 및 새로운 2차조직의 형성 등 4단계를 거치는 것으로 나타났다. 접목 초기에 형성된 괴사층은 펙틴과 리그닌 성분으로 구성되어 있었으며, 점진적으로 분해되어 대목과 접수가 결합하는 시점에 소멸되었다. 접목 초기에 축적되었던 전분 입자와 지질은 접목이 진행될수록 점진적으로 감소하였으며 세포질 내 소기관, 핵 및 원형질연락사의 변화는 관찰되지 않았다. 유세포로 구성된 치유조직으로부터 접목 15일후부터 새로운 형성층(neocambium)이 발달하였으며, 이곳에서 새로운 2차조직이 형성되기 시작했다. 새로운 2차목부는 형성층에서 기원하는 정상적인 2차목부와는 다른 분화 및 형태를 나타냈다. 새로운 2차목부는 망상 또는 벽공상의 비후에 의한 2차벽을 갖는 가도관 요소에서 기원하였으며, 2차벽의 형성은 비후된 세포벽 사이를 충전시키는 형태로써 진행되었다. 2차벽의 형성은 불균일하고 간헐적이었으며 형성된 2차벽의 두께는 불균일하였다. 새로운 2차목부의 가도관은 S자 또는 소용돌이 모양을 지니는 것으로 수평 방향으로 배열되었다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. Asante, A. and J. R. Barnett. 1997. Graft union formation in mango (Mangifera indica L). J. Hort. Sci. 72: 781-790 https://doi.org/10.1016/S0304-4238(97)00111-8
  2. Barnett, J. R and I. Weartherhead. 1988. Graft formation in sitka spruce: A scanning electron microscope study. Ann. Bot. 61: 581-587 https://doi.org/10.1093/oxfordjournals.aob.a087592
  3. Barnett, J. R and A. K. Asante. 2000. The formation of cambium from callus in grafts of woody species. In Cell and Molecular Biology of Wood Formation, Savidge et al., Bios. Ltd. London
  4. Ermel, F. F., J. Kervella, A. M. Catesson, and J. L. Poessel. 1999. Localized graft incompatibility in pear/quince (Pyrus communis/Cydonia oblonga) combinations: multivariate analysis of histological data from 5-month-old grafts. Tree Physiology 19: 645-654 https://doi.org/10.1093/treephys/19.10.645
  5. Errea, P., L. Garay, and J. A Marin. 2001. Early detection of graft incompatibility in apricot (Prunus armeniaca) using in vitro techniques. Physio. Plantarurn 112: 135-141 https://doi.org/10.1034/j.1399-3054.2001.1120101.x
  6. Esau, K. 1965. Plant Anatomy. 2nd. Ed. John Wiley & Sons, Inc., New York
  7. Fukuda, H. 1997. Tracheary element differentiation. Plant Cell 9: 1147 - 1156 https://doi.org/10.1105/tpc.9.7.1147
  8. Gahan, P. B. 1984. Plant Histochemistry and Cytochemistry. Academic press. London
  9. Hartmann, H. T., D. E. Kester, and F. T. Davies. 1990. Jr. Plant Propagation, Principles and Practices. 5th ed Prentice Hall, Englewood Cliffs
  10. Hawes, C and B. Satiat-Jeunemaitre. 2001. Plant Cell Biology. 2nd Ed. Oxford University Press, London
  11. Jaffree, C. B and M. M. Yeoman. 1983. Development of intercellular connections between opposing cells in a graft union. New Phytol. 93: 491-509 https://doi.org/10.1111/j.1469-8137.1983.tb02686.x
  12. Krishnamurthy, K. V., Methods in cell wall cytochemistry. CRC Press. Boca Taton
  13. Lucas, W. J. 1995. Plasmodesmata: intercellular channels of macromolecular transport in plants. Current Opinion in Cell Biology 7: 673-680 https://doi.org/10.1016/0955-0674(95)80109-X
  14. Moeller, R, A. E. McDonald, C. Walter, and P. J. Harris. 2003. Cell differentiation, secondary cell-wall formation and transformation of callus tissue of pinus radiata D.Don. Planta 217: 736- 747 https://doi.org/10.1007/s00425-003-1053-0
  15. Moeller, R, G. Koch, B. Nanayakkara, and U. Schmitt. 2006. Lignification in cell cultures of Pinus radiata: activities of enzymes and lignin top-ocherni-stry. Tree Physiol 26: 201 - 210 https://doi.org/10.1093/treephys/26.1.1
  16. Mohr, H and P. Schopfer. 1994. Plant Physiology. Springer, Berlin
  17. Moore, R. 1986. Graft compatibility and incompatibility in higher plants. Developmental and Comparative Immunology 5: 377-389
  18. Moore, Rand D. B. Walker. 1981 Studies of vegetative compatibility- incompatability in higher plants. I. A structural study of a compatible autograft in Sedum telephoides (Crassulacease). II.A structural study of an incompatible heterograft between Sedum telephoides (Crassulaceae) and Solanum pennellii (Solanaceae) Amer. J. Bot.68: 820 - 830; 830 - 842 https://doi.org/10.2307/2442984
  19. Nasrallah, J. B. 2002. Recognition and rejection of self in plant reproduction. Science 296: 305-308 https://doi.org/10.1126/science.296.5566.305
  20. Parkinson, M, C. E. Jeffree, and M. M. Yeoman. 1987. Incompatibility in cultured explant-grafts between members of the solanaceae. New Phytol. 91: 711-719 https://doi.org/10.1111/j.1469-8137.1982.tb03288.x
  21. Roberts, Land M C. McCann. 2000. Xylogenesis: the birth of a corpse. The Current Opinion of plant biology 3: 517-522 https://doi.org/10.1016/S1369-5266(00)00122-9
  22. Soumelidou, K, N. H. Battery, P. John, and J. R. Barnett. 1994. The anatomy of the developing bud union and its relationship to dwarfing in apple. Ann. Bot. 74: 605-611 https://doi.org/10.1006/anbo.1994.1087
  23. Stobbe, H, U. Schmitt, D. Eckstein, and D. Dujesiefken. 2002. Developmental stages and fine structure of surface callus formed after debarking of living trees (Tilia sp.). Ann. Bot. 89: 773-782 https://doi.org/10.1093/aob/mcf137
  24. Terashirna, N. 2000. Formation and ultrastructure of lignified plant cell walls. In New Horizons in Wood Anatomy (edited by Y.S. Kim). Chonnam Nat. Univ, Gwangju
  25. Wang, Y. and R. Kollmann. 1996. Vascular differentiation in the graft union of in-vitro grafts with different compatibility-structural and functional aspects. J. Plant Physiol. 147: 521-533 https://doi.org/10.1016/S0176-1617(96)80041-1
  26. Yeomann, M. M. 1984. Cellular recognition systems in grafting. In Encylopedia of Plant Physiology, New Series, Springer, Berlin, Vol 17: 453-472