Effect of the Isolation Method of Mouse Inner Cell Mass, Types of Feeder Cells and Treatment Time of Mitomycin C on the Formation Rate of ICM Colony

생쥐 내세포괴의 분리방법과 지지세포의 종류와 Mitomycin C 처리 시간이 내세포괴 Colony 형성률에 미치는 영향

  • Jang, Ho-Jin (Department of Obstetrics and Gynecology, College of Medicine, Pusan National University) ;
  • Ko, Kyung-Rae (Clinic of Infertility, Pusan National University Hospital) ;
  • Kim, Mi-Kyung (Clinic of Infertility, Pusan National University Hospital) ;
  • Na, Yong-Jin (Department of Obstetrics and Gynecology, College of Medicine, Pusan National University) ;
  • Lee, Kyu-Sup (Department of Obstetrics and Gynecology, College of Medicine, Pusan National University)
  • 장호진 (부산대학교 의과대학 산부인과학교실) ;
  • 고경래 (부산대학교병원 불임클리닉) ;
  • 김미경 (부산대학교병원 불임클리닉) ;
  • 나용진 (부산대학교 의과대학 산부인과학교실) ;
  • 이규섭 (부산대학교 의과대학 산부인과학교실)
  • Published : 2006.12.31

Abstract

Objective: This study was carried out to evaluate the effect of the isolation methods of inner cell mass from mouse blastocyst, types of feeder cells and treatment time of mitomycin C on the formation rate of ICM colony. Methods: The inner cells were isolated by conventional immunosurgery, partial trophoblast dissection with syringe needles and whole blastocyst co-culture method. Commercially available STO and primary cultured mouse embryonic fibroblast (pMEF) feeder cells were used, and mitomycin C was treated for 1, 2 or 3 hours, respectively. The formation rate of ICM colony was observed after isolation of ICM and culture of ICM on the feeder cells for 7 days. Result: The ICM colony formation rate on STO were significantly higher in partial trophoblast dissection group (58%) than that in immunosurgery (12%) or whole blastocyst culture (16%) group (p<0.05). The formation rate on pMEF feeder layer was higher in partial trophoblast dissection (88%) and whole blastocyst culture (82%) group than that in immunosurgery (16%) group (p<0.05). When mitomycin C treated to pMEF for 2 hours, the formation rate of 88% was significantly higher than those of other conditions. Conclusion: Above results showed that the efficient isolation method of ICM from blastocyst was the partial trophoblast dissection and the appropriate treatment time of mitomycin C was 2 hours. However, the subculture of ICM colony and characterization of stem cells should be carried out to confirm the efficacy of the partial trophoblast dissection method.

목 적: 본 연구는 생쥐 포배기 배아로부터 내세포괴를 분리하는 방법과 지지세포의 종류와 mitomycin C 처리 시간이 내세포괴 colony 형성률에 미치는 영향을 관찰하기 위해 시행되었다. 연구방법: 일반적인 면역절제술, 주사바늘을 이용한 부분 영양막세포 절개법, 포배기 배아 공배양법으로 내세포괴를 분리한 후, 상업적으로 구입이 가능한 STO 또는 직접 제조한 생쥐 배아섬유아세포 (pMEF)를 지지세포로 이용하여 배양하였다. 또한, mitomycin C를 1, 2, 3시간 동안 처리한 각각의 지지세포에서 7일 동안 배양한 후, 내세포괴 colony 형성률을 살펴보았다. 결 과: STO 지지세포에서는 부분 영양막세포 절개법을 사용한 경우 (52%)가 면역절제술 (12%)이나 포배기 배아 공배양법 (16%)을 사용한 경우보다 내세포괴 colony 형성률이 유의하게 높았다 (p<0.05). pMEF 지지세포에서의 형성률은 부분 영양막세포 절개법을 사용한 경우 (88%)와 포배기 배아 공배양법 (82%)을 사용한 경우가 면역절제술 (16%)을 사용한 경우보다 높았다 (p<0.05). STO와 pMEF 모두에서, 2시간 mitomycin C 처리군 (52%, 88%)이 1시간 처리군 (9%, 42%)과 3시간 처리군 (18%, 76%)보다 높은 내세포괴 colony 형성률을 보여주었다 (p<0.05). 결 론: 이상의 결과는 부분 영양막세포 절개법이 생쥐 포배기 배아로부터 내세포괴를 분리하는 가장 효과적인 방법이며, 가장 적절한 mitomycin C 처리 시간은 2시간이라는 것을 보여준다. 그러나 이와 같은 부분 영양막세포 절개법의 효용성을 보다 명확하게 확인하기 위해서는 분리한 내세포괴를 계대배양하여 줄기세포주로서의 특성을 확인하는 실험이 추가적으로 필요할 것으로 생각된다.

Keywords

References

  1. Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 1985; 87: 27-45
  2. Pera MF, Reubinoff B, Trouson A. Human embryonic stem cell. J Cell Sci 2000; 113: 5-10
  3. Smith AG, Heath JK, Donaldsm BD, Wong GG, Moreu J, Stabl M, et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 1988; 336: 688-90 https://doi.org/10.1038/336688a0
  4. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in mediurn conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981; 78: 7634-8
  5. Evans MJ, Kaufman M. Establishment in culture of pluripotential cell from mouse embryos. Nature 1981; 292: 154-6 https://doi.org/10.1038/292154a0
  6. Graves KH, Moreadith RW. Derivation and characterization of putative pluripotential embryonic stem cells from preimplantation rabbit embryos. Mol Reprod Dev 1993; 36: 424-33 https://doi.org/10.1002/mrd.1080360404
  7. Wheeler MB. Development and validation of swine embryonic stem cells: a review. Reprod Fertil Dev 1994; 6: 563-8 https://doi.org/10.1071/RD9940563
  8. Cibelli JB, Stice SL, Golueke PJ, Kane JJ, Jerry J, Blackwell C, et al. Transgenic bovine chimeric offspring produced from somatic cell derived stem-like cells. Nature Biotechnol 1998; 16: 42-6
  9. Doetschman TC, Williams P, Maeda N. Establishment of hamster blastocyst derived embryonic stem cells. Dev Biol 1988 May; 127(1): 224-7 https://doi.org/10.1016/0012-1606(88)90204-7
  10. Bongso A, Fong CY, Ng SC, Ratnam SS. The growth of inner cell mass cells from human blastocysts. Theriogenology 1994; 41: 161 https://doi.org/10.1016/S0093-691X(05)80071-8
  11. Bongso A, Fong CY, Ng SC, Ratnam SS. Isolation and culture of inner cell mass cells from human blastocysts. Hum Reprod 1994; 9: 2110-7 https://doi.org/10.1093/oxfordjournals.humrep.a138401
  12. Thomson JA, Itskovitz Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines from human blastocysts. Science 1998; 282: 1145-7 https://doi.org/10.1126/science.282.5391.1145
  13. Geron. 1999. http://www.geron.com
  14. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 2001; 108: 407-4 https://doi.org/10.1172/JCI200112131
  15. Fishel SB, Edwards RG, Evans CJ. Human chorionic gonadotropin secreted by preimplantation embryos cultured in vitro. Science 1984; 223: 816-8 https://doi.org/10.1126/science.6546453
  16. Edwards RG. IVF and history of stem cells. Nature 2001; 413: 349-51 https://doi.org/10.1038/35096649
  17. Edwards RG. Personal pathways to embryonic stem cells. Reprod Biomed Online 2002; 4: 236-8
  18. Richards M, Fong CY, Chan WK, Wong PC, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nature Biotechnol 2002; 20: 933-6 https://doi.org/10.1038/nbt726
  19. Axelrod HR. Embryonic stem cell lines derived from blastocysts by a simplified technique. Dev Biol 1984; 101: 225-8 https://doi.org/10.1016/0012-1606(84)90133-7
  20. Abbondanzo SJ, Gadi I, Stewart CL. Derivation of embryonic stem cell lines. Methods Enzymol 1993; 225: 803-23 https://doi.org/10.1016/0076-6879(93)25052-4
  21. Solter D, Knowles BB. Immunosurgery of mouse blastocyst. Proc Natl Acad Sci USA 1975; 72: 5099-102 https://doi.org/10.1073/pnas.72.12.5099
  22. Brook FA, Gardner RL. The origin and efficient derivation of embryonic stem cells in the mouse. Proc Natl acad Sci USA 1997; 94: 5709-12 https://doi.org/10.1073/pnas.94.11.5709
  23. Pease S, Braghetta P, Gearing D, Grail D, williams RL. Isolation of embryonic stem cells in media supplemented with recombinant leukemia inhibitory factor (LIF). Dev Biol 1990; 141: 344-52 https://doi.org/10.1016/0012-1606(90)90390-5
  24. Williams, RL, Hilton DJ, Pease S, Willson TA, Stewant CL, Gearing DP, et al. Myeloid leukemia inhibitory factor maintains the developmental potential of embryonic stems. Nature 1988; 336: 684-7 https://doi.org/10.1038/336684a0