전기 검출 시스템을 이용한 Microfluidic Immuno-Sensor Chip

Microfluidic Immuno-Sensor Chip using Electrical Detection System

  • 맹준호 (한양대학교 생화학과 대학원) ;
  • 이병철 (한양대학교 분자생명과학부) ;
  • 조철호 (한양대학교 기계공학과 대학원) ;
  • 고용준 (한양대학교 분자생명과학부) ;
  • 안유민 (한양대학교 기계공학과) ;
  • 조남규 (한양대학교 분자생명과학부) ;
  • 이성환 (한양대학교 분자생명과학부) ;
  • 황승용 (한양대학교 분자생명과학부)
  • Maeng, Joon-Ho (Department of Biochemistry, Graduate School, Hanyang University) ;
  • Lee, Byung-Chul (Division of Molecular and Life Science, Hanyang University) ;
  • Cho, Chul-Ho (Department of Precision Mechanical Engineering, Graduate School, Hanyang University) ;
  • Ko, Yong-Jun (Division of Molecular and Life Science, Hanyang University) ;
  • Ahn, Yoo-Min (Department of Mechanical Engineering, Hanyang University) ;
  • Cho, Nahm-Gyoo (Division of Molecular and Life Science, Hanyang University) ;
  • Lee, Seoung-Hwan (Division of Molecular and Life Science, Hanyang University) ;
  • Hwang, Seung-Yong (Division of Molecular and Life Science, Hanyang University)
  • 발행 : 2006.10.30

초록

Bio-MEMS를 기반으로 microfilter와 백금 전극이 내재되어 있는 microbiochip을 제작하였다. 우리는 이 chip으로 microbead에 indirect ELISA 방법으로 항원-항체를 반응시키고 전기 신호 검출 방법을 이용하여 반응 여부를 판단하였다. 이 때 신호 증폭을 위해 silver enhancer를 사용하였다. Chip 상에서 항원-항체 반응 조건을 최적화하기 위해 pH, temperature, flow time, flow rate, silver enhancer time을 결정하였다. 이렇게 최적화된 조건을 바탕으로 짧은 시간 안에 소량의 시료로 immunoassay를 성공적으로 수행할 수 있었다. 전기 신호 검출 방식을 사용함으로써 biosensor 장비의 소형화와 다중 시료 측정과 자동화를 biosensor에서 적용할 수 있는 가능성을 제시하였다.

This study presents the characterization of an integrated portable microfluidic electrical detection system for fast and low volume immunoassay using polystyrene microbead, which are used as immobilization surfaces. In our chip, a filtration method using the microbead was adopted for sample immobilization and immunogold silver staining(IGSS) was used to increase the electrical signal. The chip is composed of an inexpensive and biocompatible Polydimethylsiloxane(PDMS) layer and Pyrex glass substrate. Platinum microelectrodes for electric signal detection were fabricated on the substrate and microchannel and pillar-type microfilters were formed in the PDMS layer. With a fabricated chip, we reacted antigen and antibody according to the procedures. Then, silver enhancer was injected to increase the size of nanogold particles tagged with the second antibody. As a result, microbeads were connected to each other and formed an electrical bridge between microelectrodes. Resistance measured through the electrodes showed a difference of two orders of magnitude between specific and nonspecific immuno-reactions. The detection limit was 10 ng/ml. The developed immunoassay chip reduced the total analysis time from 3 hours to 50 min. Fast and low-volume biochemical analysis has been successfully achieved with the developed microfilter and immuno-sensor chip, which is integrated to the microfluidic system.

키워드

참고문헌

  1. Kissinger, P. T. (2005), Biosensors a perspective, Biosensors and Bioelectronics, 20, 2512-2516 https://doi.org/10.1016/j.bios.2004.10.004
  2. Khandurina, J. and A. Guttman (2002), Bioanalysis in microfluidic devices, Chromatography 943, 159-183 https://doi.org/10.1016/S0021-9673(01)01451-0
  3. Luppa, P. B., L. J. Sokoll, and D. W. Chan (2001), Immunosensorsprinciples and applications to clinical chemistry, Clinica Chimica Acta 314, 1-26 https://doi.org/10.1016/S0009-8981(01)00629-5
  4. Hayes, M A., N. A. Polson, A. N. Phayre, et al. (2001), Flow-based Microimmunoassay, Analytical Chemistry 73, 5896-5902 https://doi.org/10.1021/ac0104680
  5. Seydack, M. (2005), Nanoparticle labels in immunosensing using optical detection methods, Biosensors and bioelectronics, 20, 2454-2469 https://doi.org/10.1016/j.bios.2004.11.003
  6. Figeys, D. (2002), Adapting arrays and lab-on-a-chip technology for proteomics, Proteomics 2, 373-382 https://doi.org/10.1002/1615-9861(200204)2:4<373::AID-PROT373>3.0.CO;2-I
  7. Rossier, J. S. and H. H. Girault (2001), Enzyme Linked immunosorbent assay on a microchip with electrochemical detection, Lab on a chip 1, 153-157 https://doi.org/10.1039/b104772h
  8. Rosenzweig, Z. (2002), Development of an Aggregation-Based immunoassay for Anti-Protein A using Gold Nanoparticles, Analytical Chemistry 74, 1624-1628 https://doi.org/10.1021/ac011127p
  9. Hacker, G. W. and W. H. Muss (1996), Electron Microscopical Autometallo- graphy:Immunogold-Silver Staining (IGSS) and Heavy-Metal Histochemistry, Enzymology 10, 257-269
  10. Velev, O. D. and E. W. Kaler (1999), In Situ Assembly of Colloidal Particles into Miniaturized Biosensors, Langmuir 15, 11-17
  11. Xue, M., J. Li, and Z. Lu, et al. (2002), Array-Based Electrical Detector of Integrated DNA Identification System for Genetic Chip Applications, ESSDERC, 483-486
  12. Hagelsieb, L. M., P. E. Lobert, and R. Pampin, et al. (2004), Sensitive DNA electrical detection based on interdigitated Al/Al2O3 microelectrodes, Sensors and Actuators B 98, 269-274 https://doi.org/10.1016/j.snb.2003.10.036