• Title/Summary/Keyword: Stack Plume

Search Result 24, Processing Time 0.022 seconds

Effect of Flue Gas Heat Recovery on Plume Formation and Dispersion

  • Wu, Shi Chang;Jo, Young Min;Park, Young Koo
    • Particle and aerosol research
    • /
    • v.8 no.4
    • /
    • pp.161-172
    • /
    • 2012
  • Three-dimensional numerical simulation using a computational fluid dynamics (CFD) was carried out in order to investigate the formation and dispersion of the plume discharged from the stack of a thermal power station. The simulation was based on the standard ${\kappa}{\sim}{\varepsilon}$ turbulence model and a finite-volume method. Warm and moist exhaust from a power plant stack forms a visible plume as entering the cold ambient air. In the simulation, moisture content, emission velocity and temperature of the flue gas, air temperature and wind speed were dealt with the main parameters to analyze the properties of the plume composed mainly of water vapor. As a result of the simulation, the plume could be more apparent in cold winter due to a big difference of latent heat capacity. At no wind condition, the white plume rises 120 m upward from the top of the stack, and expands to 40 m around from the stack in cold winter after flue gas heat recovery. The influencing distance of relative humidity will be about 100 m to 400 m downstream from the stack with a cross wind effect. The decrease of flue gas temperature by heat recovery of thermal energy facilitates the formation of the plume and restrains its dispersion. Wind speed with vertical distribution affects the plume dispersion as well as the density.

Improvement in Plume Dispersion Formulas for Stack Emissions Using Ground-based Imaging-DOAS Data

  • Lee, Hanlim;Ryu, Jaeyong;Jeong, Ukkyo;Noh, Youngmin;Shin, Sung Kyun;Hong, Hyunkee;Kwon, Soonchul
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3427-3432
    • /
    • 2014
  • This study introduces a new method of combining Imaging Differential Optical Absorption Spectroscopy (Imaging-DOAS) data and plume dispersion formulas for power plant emissions to determine the three-dimensional structure of a dispersing pollution plume and the spatial distributions of trace gas volume mixing ratios (VMRs) under conditions of negligible water droplet and aerosol effects on radiative transfer within the plume. This novel remote-sensing method, applied to a power plant stack plume, was used to calculate the two-dimensional distributions of sulfur dioxide ($SO_2$) and nitrogen dioxide ($NO_2$) VMRs in stack emissions for the first time. High $SO_2$ VMRs were observed only near the emission source, whereas high $NO_2$ VMRs were observed at locations several hundreds of meters away from the initial emission. The results of this study demonstrate the capability of this new method as a tool for estimating plume dimensions and trace gas VMRs in power plant emissions.

Two-dimension Numerical Simulation of Stack Flue Gas Dispersion

  • Park, Young-Koo;Wu, Shi-Chang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.33-39
    • /
    • 2012
  • A numerical simulation of plume from a stack into atmospheric cross flow is investigated using a two-dimension model. The simulation is based on the ${\kappa}{\sim}{\varepsilon}$ turbulence model and a finite volume method. In this paper, it mostly researches how the wind velocity affects the flue gas diffusion from an 80 m high stack. Wind velocity is one of the most important factors for flue gas diffusion. The plume shape size, the injection height, the NO pollutant distribution and the concentration at the near ground are presented with two kinds of wind velocities, 1 m/s and 5 m/s. It is found that large wind velocity is better for flue gas diffusion, it generates less downwash. Although the rise height is lower, the pollutant dilutes faster and more sufficient.

First Simultaneous Visualization of SO2 and NO2 Plume Dispersions using Imaging Differential Optical Absorption Spectroscopy

  • Lee, Hanlim;Noh, Youngmin;Kwon, Soonchul;Hong, Hyunkee;Han, Kyung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1191-1194
    • /
    • 2014
  • Imaging Differential Optical Absorption Spectroscopy (Imaging-DOAS) has been utilized in recent years to provide slant column density (SCD) distributions of several trace gas species in the plume. The present study introduces a new method using Imaging-DOAS data to determine two-dimensional plume structure from the plume emissions of power plant in conditions of negligible aerosol effects on radiative transfer within the plume. We demonstrates for the first time that two-dimensional distributions of sulfur dioxide ($SO_2$) and nitrogen dioxide ($NO_2$) in power plant emissions can be determined simultaneously in terms of SCD distribution. The $SO_2$ SCD values generally decreased with increasing distance from the stack and with distance from the center of the plume. Meanwhile, high $NO_2$ SCD was observed at locations several hundred meters away from the first stack due to the ratio change of NO to $NO_2$ in NOx concentration, attributed to the NO oxidation by $O_3$. The results of this study show the capability of the Imaging-DOAS technique as a tool to estimate plume dimensions in power plant emissions.

Wind tunnel study of plume dispersion with varying source emission configurations

  • Wittwer, Adrian R.;Loredo-Souza, Acir M.;Schettini, Edith B. Camano;Castro, Hugo G.
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.417-430
    • /
    • 2018
  • The concentration fields in the proximities of a local gas emission source are experimentally analyzed in several combinations of wind incidences and source emissions. These conditions are determined by the plume buoyancy, emission velocity and incident flow wind speed. Concentration measurements are performed by an aspirating probe in a boundary layer wind tunnel. The analysis included the mean concentration values and the intensity of concentration fluctuations in a neutral atmospheric boundary layer flow. Different configurations are tested: an isolated stack in a homogeneous terrain and a stack with a bluff body in close proximity, located windward and leeward from the emission source. The experimental mean concentration values are contrasted with Gaussian profiles and the dilution factor is analyzed with respect to the empirical curves of the minimum dilution. Finally, a study on the plume intermittency is performed in a cross-sectional plane near the emission source. It is possible to highlight the following observations: a) plume vertical asymmetry in the case of an isolated emission source, b) significant differences in the dispersion process related to the relative location of the emission source and bluff body effects, and c) different probabilistic behavior of the concentration fluctuation data in a cross-sectional measurement plane inside the plume.

The Sensitivity Analysis and Modeling for the Atmospheric Dispersion of Point Source (점오염원의 대기확산에 관한 민감도 분석과 모델링)

  • 이화운;원경미;배성정
    • Journal of Environmental Science International
    • /
    • v.9 no.1
    • /
    • pp.57-64
    • /
    • 2000
  • The sensitivity analysis of two short-term models (ISCST3, INPUFF2.5) is performed to improve the model accuracy. It appears that the sensitivities on the changes of wind speed, stack height and stack inner diameter in the near distance from source, stability and mixing height in the remote distance form source, are significant. Also the gas exit velocity, stack inner diameter, gas temperature and air temperature which affect the plume rise have some effects on the concentration values of each model within the downwind distance where final plume rise is determined. And in modeling for the atmospheric dispersion of point pollutant source INPUFF2.5 can calculate amount, trajectory of puff and concentration versus time at each receptors. So, it is compatible to analyze distribution of point pollutants concentration at modeling area.

  • PDF

A Study for Characteristics of Stack Plume Dispersion under Various (다양한 대기풍속 및 대기온도 구배 조건에서의 공장 배출 가스의 확산 특성에 관한 연구)

  • Park, Il-Seouk
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.773-780
    • /
    • 2010
  • The dispersion of plume which is emitted from a chimney is governed by a lot of factors: wind, local terrain, turbulence intensity of atmosphere, and temperature, etc. In this study, we numerically investigate the plume dispersions for various altitudinal temperature gradients and wind speeds. The normal atmosphere has the temperature decrease of $0.6^{\circ}C/100m$, however, actually the real atmosphere has the various altitudinal temperature profiles according to the meteorological factors. A previous study focused on this atmospheric temperature gradient which induces a large scale vertical flow motion in the atmosphere thus makes a peculiar plume dispersion characteristics. In this paper, the effects of the atmospheric temperature gradient as well as the wind speed are investigated concurrently. The results for the developing processes in the atmosphere and the affluent's concentrations at the ambient and ground level are compared under the various altitudinal temperature gradients and wind speeds.

Simulation of Plume Length Induced by Orimulsion Combustion (오리멀젼 연소시 발생하는 백연의 연기거리 전산모사)

  • Kwak, Byoung-Kyu;Kim, Jong-Ho;Joo, Ji-Bong;Lee, Jeong-Jin;Kim, Jin-Soo;Kim, Young-Hun;Yi, Jong-Heop
    • Clean Technology
    • /
    • v.14 no.2
    • /
    • pp.136-143
    • /
    • 2008
  • The objective of this study is to investigate the visibility of plume at the Y power plant stack, which fires the orimulsion as a fuel. The plume contains numerous primary particles under $1\;{\mu}m$ size and inorganic ions possibly inferred by the chemicals of secondary aerosol formation. We evaluated the visibility of the plume using the modified PLUVUE-II model. The monitoring data on the particle size distribution (PSD) and secondary aerosols of sulfate were applied to estimate and evaluate the main factors of plume opacity. The chemical reactions were applied to the model for the secondary aerosol formation of $(NH_4)_2SO_4(s)$. The maximum plume length was estimated by an optic method using threshold contrast. The results showed that the plume length was strongly dependent upon the PSD and $(NH_4)_2SO_4(s)$ concentration of the plume emitted from the stack.

  • PDF

Characteristic Analysis of the Surface Concentration Distribution under the Influence of Particle Settling by Lagrangian Model (Lagrangian 모형에 의한 분진 침강 효과에 따른 지표면 농도의 분포특성 분석)

  • Park, I.S.;Kang, I.G.;Choi, K.D.
    • Journal of Environmental Impact Assessment
    • /
    • v.2 no.1
    • /
    • pp.57-63
    • /
    • 1993
  • An analysis for particle settling effects via of plume centerline tilted exponentially under the influence of panicle settling velocity is carried out for particle of $30{\mu}m$ diameter with $1g/cm^3$ density and 0.02m/s settling velocity corresponding to its particle characteristic according to various wind speeds, atmospheric stabilities. Characteristic analysis of surface concentration distribution simulated by Lagrangian model also are carried out under the influence of plume centerline tilted exponentially at 10m stack height emitted 200 particles per second. This study reveals that plume centerline at the nearby source is sharply tilted exponentially under the condition of stable, weakly wind speed, therefore the lower concentration at the nearby source, the higher concentration at the downwind distance far away from source than actual one is brought out, if not apply the effect of plume centerline tilted exponentially to diffusion Model.

  • PDF