Herbicidal properties of picolinafen

제초제 picolinafen의 제초활성 특성

  • Lee, Jong-Nam (R&D Park, LG Life Sciences Ltd.) ;
  • Koo, Suk-Jin (R&D Park, LG Life Sciences Ltd.) ;
  • Kim, Do-Soon (R&D Park, LG Life Sciences Ltd.) ;
  • Hwang, Ki-Hwan (R&D Park, LG Life Sciences Ltd.) ;
  • Kim, Dae-Hwang (Bio organic Science Division, Korea Research Institute of Chemical Technology) ;
  • Ko, Yong-Kwan (Bio organic Science Division, Korea Research Institute of Chemical Technology) ;
  • Chung, Keun-Hoe (Bio organic Science Division, Korea Research Institute of Chemical Technology) ;
  • Ryu, Jae-Wook (Bio organic Science Division, Korea Research Institute of Chemical Technology) ;
  • Woo, Jae-Chun (Bio organic Science Division, Korea Research Institute of Chemical Technology) ;
  • Koo, Dong-Wan (Bio organic Science Division, Korea Research Institute of Chemical Technology)
  • Published : 2006.12.30

Abstract

This study was conducted to evaluate herbicidal properties of picolinafen in terms of crop safety, weed control spectrum, application window, residual efficacy and resistant weed control. Herbicidal phytotoxicity of picolinafen to wheat and barley was greatest when applied at 0 days after sowing (DAS), but decreased significantly as plant growth advanced. Picolinafen showed greater activity against broadleaved weeds than grass weeds. Picolinafen showed highest activity when it was applied at early post emergence timing (5 to 15 DAS), and showed significantly decreased activity at 20 DAS application. The $LT_{50}$ values (the period from application required for residual control by 50%) was 9.3 and 6.5 days against Digitaria ciliaris and Brasica naus at 60 g ai $ha^{-1}$, respectively. Picolinafen showed similar activities against both triazine resistant and sensitive Amaranthus retroflexus. Collectively, picolinafen appeared to have a good fitness to control resistant broad leaved weeds control by early post emergence application.

본 연구에서 Phytoene desaturase를 저해하여 식물체내의 카르티노이드의 생합성을 저해하는 picolinafen(N-(4-fluorophenyl)-6-[3-(trifluoromethyl)phenoxy]-2-pyridinecarboxamide)의 특성을 알아보기 위하여 밀(Triticum aestivum L.), 보리(Hordeum vulgare L.)에 대한 약해와 제초 Spectrum, 처리적기, 잔효력, 저항성 잡초 방제효과 등을 평가하였다. Picolinafen은 밀, 보리에 대한 약해는 파종 동시 처리시 가장 높게 나타났으며, 처리시기가 늦어질수록 감소하였다. 제초활성은 발아 전, 후 처리 모두에서 나타나며, 화본과 잡초보다는 광엽 잡초에 높았다. 처리적기는 감수성의 차이에 따라 초종별로 다양하였으나 파종 후 $5{\sim}15$일 사이의 초기 경엽처리시 방제효과가 가장 높아 적기로 판단되었다. 잔효력은 60 g ai $ha^{-1}$ 처리시 바랭이(Digitaria ciliaris)와 유채(Brassica napus)에 대한 $LT_{50}$값(생체중을 50% 저해하는 잔효기간)이 각각 9.3일, 6.5일로 나타나 비교적 짧은 편이었다. Triazine계 제초제에 저항성인 털비름(Amaranthus retroflexus)에 대해서는 감수성 털비름과 제초활성에 차이가 없었다. 따라서 본 실험 결과 picolinafen은 광엽잡초를 주요 대상잡초로 생육초기 경엽처리시 방제효과가 가장 우수하였으며, 저항성 잡초 방제에 사용 가능한 특성을 보여주었다.

Keywords

References

  1. Aladesanwa, R. D. (2005) Screenhouse evaluation of atrazine for soil residual activity on growth, development and nutritional quality of okra (Abelmoschus esculentus Moench) in southwestern Nigeria. Crop protection 24:927-931 https://doi.org/10.1016/j.cropro.2005.01.022
  2. Boger, P. and G. Sandmann (1998) Carotenoid biosynthesis inhibitor herbicides-mode of action and resistance mechanisms. Pestic. Outlook 9:29-35
  3. Bramley, P. M. and K. E. Pallett (1993) Phytoene desaturase: A biochemical target of many bleaching herbicide. Brighton Crop Protection Conference-Weeds, pp.713-722
  4. Breitenbach, J., C. Zhu and G. Sandmann (2001) Bleaching herbicide nort1urazon inhibits phytoene desaturase by competition with the cofactors. J. Agric. Food Chem. 49:5270-5272 https://doi.org/10.1021/jf0106751
  5. Breitenbach, J., P. Boger and G. Sandmann (2002) Interaction of bleaching herbicides with target enzyme S - carotene desaturase. Pestic. Biochem. Physiol. 73:104-109 https://doi.org/10.1016/S0048-3575(02)00022-6
  6. Chae, S. H., K. Yoneyarna, Y. Takeuchi and D. M. Joel (2004) Fluridone and nort1urazon, carotenoid biosynthesis inhibitors, promote seed condition and germination of the holoparasite Orobanche minor. Am. Soc. Plant Biologist; Southern Section pp.328 - 337
  7. Cherrier, R., A. Boivin, C. Perrin-Ganier and M. Schiavon (2005) Sulcotrione versus atrazine transport and degradation in soil columns. Pest Manag. Sci. 61:899-904 https://doi.org/10.1002/ps.1105
  8. Jung, S. (2004) Effect of chlorophyll reduction in Arabidopsis thaliana by methyl jasmonate or nort1urazon on antioxidant systems. Plant Physiol. Biochem. 42:225-231 https://doi.org/10.1016/j.plaphy.2004.01.001
  9. Kowalczyk-Schroder, S. and G. Sandmann (1992) Interference of fluridone with the desaturation of phytoene in membranes of the cyanobacterium Aphanocapsa. Pestic. Biochem. Physiol. 42:7-12 https://doi.org/10.1016/0048-3575(92)90068-B
  10. Pest Management Regulatory Agency Health Canada (2005) Proposed regulatory decision document PRDD2005-05 AC900001
  11. Salguero, A., B. de la Morena, J. Vigara, J. M. Vega, C. Vilchez and R. Leon (2003) Carotenoids as protective response against oxidative damage in Dunaliella bardawil. Biomolecular Engineering 20:249-253 https://doi.org/10.1016/S1389-0344(03)00065-0
  12. Sandmann, G., H. Linden and P. Boger (1989) Enzyme-kinetic studies on the interaction of norflurazon with phytoene desaturase. Z. Naturforsch 44(C):787 -790
  13. Sandmann, G. and P. Boger (1993) Structure-activity correlations of substituted 3(2H)furanoes chemically related to the bleaching herbicide flutamone. Z. Naturforsch 48(C):312-316
  14. Sandmann, G. and P. Boger (1997) Phytoene desaturase as a target for bleaching herbicides. In herbicide activity: toxicology, biochemistry and molecular biology. RM. Roe et al. (Eds.) lOS Press. pp.1 - 10
  15. Schneider, D., P. Boger and G. Sandmann (1997) Heterologous expression in an active state, purification, and biochemical properties. Protein Expression Purif. 10: 175 - 179 https://doi.org/10.1006/prep.1997.0730
  16. Streibig, J. C. (1980) Models for curve fitting herbicide dose response data. Acta Agric. Scan. 30:59-64 https://doi.org/10.1080/00015128009435696
  17. Tal, B., J. S. Rokem, J. Gressel and I. Goldberg (1984) The effect of chlorophyll bleaching herbicides on growth, carotenoid and diosgeninlevels in cell suspension cultures of Dioscorea deltoidea. Phytochem. 23(6):1333-1335 https://doi.org/10.1016/S0031-9422(00)80456-2
  18. Trebst., A and B. Depka (1997) Role of carotene in the rapid turnover and assembly of photosystem II in Chlamydomonas reinhardtii. FEBS Letters 400:359 - 362 https://doi.org/10.1016/S0014-5793(96)01419-6
  19. Vecchia, F. D., R Barbato, N. L. Rocca, I. Moro and N. Rascio (2001) Responses to bleaching herbicides by leaf chloroplasts of maize plants grown at different temperatures. Exp. Bot. 52(357):811-820 https://doi.org/10.1093/jexbot/52.357.811
  20. White, R H., W. S. Clayton, A. F. Burnhams, A. Goldsmith, G. Seaman and T. Walker (1999) AC900001: A new herbicide for broadleaf weed control in cereals. The 1999 Brighton Conference-Weeds pp.47-52
  21. Willoughby, I., D. Clay and F. Dixon (2003) The effect of pre-emergent herbicides on germination and early growth of broadleaved species used for direct seeding. Forestry 76(1):83-94 https://doi.org/10.1093/forestry/76.1.83
  22. Yu, Q., X. Q. Zhang, A. Hashem, M. J. Walsh and S. B. Powles (2003) ALS gene proline (197) mutations confer ALS herbicide resistance in eight separated wild radish (Raphanus raphanistrum) populations. Weed Sci. 51:831-838 https://doi.org/10.1614/02-166
  23. 김진석, 김태준, 김성문, 조광연 (1999) 제초제 작용기작 연구의 최근 동향과 활용. 한국잡초학회지 19(4):261-268