Styrenic Polymer/Organoclay Nanocomposite Prepared via in-situ Polymerization with an Azoinitiator Linked to an Epoxy Oligomer

  • Jeong, Han-Mo (Department of Chemistry, University of Ulsan) ;
  • Choi, Mi-Yeon (Department of Chemistry, University of Ulsan) ;
  • Kim, Min-Seok (Department of Chemistry, University of Ulsan) ;
  • An, Jin-Hee (Department of Chemistry, University of Ulsan) ;
  • Jung, Jin-Su (Department of Chemistry, University of Ulsan) ;
  • Kim, Jae-Hoon (Department of Chemistry, University of Ulsan) ;
  • Kim, Byung-Kyu (Department of Polymer Science and Engineering, Pusan National University) ;
  • Cho, Sung-Man (Department of Polymer Science and Engineering, Pusan National University)
  • Published : 2006.12.31

Abstract

An azoinitiator linked to an epoxy oligomer, which could easily diffuse into the organoclay gallery and swell it, was used as an initiator to enhance the delamination of an organoclay, Cloisite 25A, in a matrix of styrenic polymers, poly(styrene-co-acrylonitrile) and polystyrene, during the preparation of a nanocomposite via an in-situ polymerization method. X-ray diffraction results and transmission electron microscopic observation of the morphology showed that the epoxy segment enhanced not only the delamination but also the extrication of ammonium cations from the organoclay gallery into the polymer matrix. The latter phenomenon induced the structural change of the alkyl group of ammonium cations in the gallery from a bilayer to monolayer structure, and also decreased the glass-rubber transition temperature as measured by a differential scanning calorimeter and dynamic mechanical analyzer.

Keywords

References

  1. P. C. Le Baron, Z. Wang, and T. J. Pinnavaia, Appl. Clay Sci., 15, 11 (1999) https://doi.org/10.1016/S0169-1317(99)00017-4
  2. E. P. Giannelis, Appl.Organometal. Chem., 12, 675 (1998) https://doi.org/10.1002/(SICI)1099-0739(199810/11)12:10/11<675::AID-AOC779>3.0.CO;2-V
  3. T. J. Pinnavaia and G. W. Beall, Eds., Polymer-Clay Nanocomposites, John Wiley & Sons, New York, 2000
  4. L. A. Utracki, Clay-Containing Polymeric Nanocomposites, Rapra Technology Limited, Shawbury, 2004
  5. H. Acharya and S. K. Srivastava, Macromol. Res., 14, 132 (2006) https://doi.org/10.1007/BF03218500
  6. S.-Y. Park and Y.-H. Cho, Macromol. Res., 13, 156 (2005) https://doi.org/10.1007/BF03219031
  7. J.-Y. Kim, S.-H. Hwang, Y. S. Hong, W. Huh, and S.-W. Lee, Polymer (Korea), 29, 87 (2005)
  8. S.-U. Lee, I.-H. Oh, J. H. Lee, K.-Y. Choi, and S.-G. Lee, Polymer (Korea), 29, 271 (2005)
  9. C. Zeng and L. J. Lee, Macromolecules, 34, 4098 (2001) https://doi.org/10.1021/ma010061x
  10. A. B. Morgan and J. W. Gilman, J. Appl. Polym. Sci., 87, 1329 (2003) https://doi.org/10.1002/app.11884
  11. Y. S. Choi, M. H. Choi, K. H. Wang, S. O. Kim, Y. K. Kim, and I. J. Chung, Macromolecules, 34, 8978 (2001) https://doi.org/10.1021/ma0106494
  12. M. W. Weimer, H. Chen, E. P. Giannelis, and D. Y. Sogah, J. Am. Chem. Soc., 121, 1615 (1999) https://doi.org/10.1021/ja983751y
  13. E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, and T. C. Chung, Chem. Mater., 13, 3516 (2001) https://doi.org/10.1021/cm0110627
  14. P. Aranda and E. Ruiz-Hitzky, Chem. Mater., 4, 1395 (1992) https://doi.org/10.1021/cm00024a048
  15. J. Wu and M. M. Lerner, Chem. Mater., 5, 835 (1993) https://doi.org/10.1021/cm00030a019
  16. H. R. Fischer, L. H. Gielgens, and T. P. M. Koster, Acta Polym., 50, 122 (1999) https://doi.org/10.1002/(SICI)1521-4044(19990401)50:4<122::AID-APOL122>3.0.CO;2-X
  17. B. Liao, M. Song, H. Liang, and Y. Pang, Polymer, 42, 10007 (2001) https://doi.org/10.1016/S0032-3861(01)00563-8
  18. H. M. Jeong and Y. T. Ahn, Macromol. Res., 13, 102 (2005) https://doi.org/10.1007/BF03219022
  19. H. M. Jeong, M. Y. Choi, and Y. T. Ahn, Macromol. Res., 14, 312 (2006) https://doi.org/10.1007/BF03219087
  20. H. M. Jeong, J. S. Choi, Y. T. Ahn, and K. H. Kwon, J. Appl. Polym. Sci., 99, 2841 (2006) https://doi.org/10.1002/app.22985
  21. M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, and A. Okada, Macromolecules, 30, 6333 (1997) https://doi.org/10.1021/ma961786h
  22. M. Kato, A. Usuki, and A. Okada, J. Appl. Polym. Sci., 66, 1781 (1997) https://doi.org/10.1002/(SICI)1097-4628(19971128)66:9<1781::AID-APP17>3.0.CO;2-Y
  23. A. Usuki, M. Kato, A. Okada, and T. Kurauchi, J. Appl. Polym. Sci., 63, 137 (1997) https://doi.org/10.1002/(SICI)1097-4628(19970103)63:1<137::AID-APP15>3.0.CO;2-2
  24. H. Ishida, S. Campbell, and J. Blackwell, Chem. Mater., 12, 1260 (2000) https://doi.org/10.1021/cm990479y
  25. T. O. Ahn, J. H. Kim, J. C. Lee, H. M. Jeong, and J.-Y. Park, J. Polym. Sci., Polym. Chem., 31, 435 (1993) https://doi.org/10.1002/pola.1993.080310215
  26. R. A. Vaia, R. K. Teukolsky, and E. P. Giannelis, Chem. Mater., 6, 1017 (1994) https://doi.org/10.1021/cm00043a025
  27. G. Lagaly, Solid State Ionics, 22, 43 (1986) https://doi.org/10.1016/0167-2738(86)90057-3
  28. M. B. Ko, M. Park, J. Kim, and C. R. Choe, Kor. Polym. J., 8, 95 (2000)
  29. J. T. Yoon, W. H. Jo, M. S. Lee, and M. B. Ko, Polymer, 42, 329 (2001) https://doi.org/10.1016/S0032-3861(00)00333-5
  30. M. B. Ko, J. Kim, and C. R. Choe, Korea Polym. J., 8, 120 (2000)
  31. H. M. Jeong, B. C. Kim, E. H. Kim, J. Mater. Sci., 40, 3783 (2005) https://doi.org/10.1007/s10853-005-3719-4
  32. P. Uthirakumar, K. S. Nahm, Y. B. Hahn, and Y.-S. Lee, Eur. Polym. J., 40, 2437 (2004) https://doi.org/10.1016/j.eurpolymj.2004.06.013
  33. M. W. Noh and D. C. Lee, Polym. Bull., 42, 619 (1999) https://doi.org/10.1007/s002890050510