Macroscopic Nonlinear Optical Properties of Tricyanopyrrolidene Chromophore Containing Amorphous Polycarbonate: Effect of Molecular Lateral Moiety in the Conjugative Structure

  • Cho, Min-Ju (Department of Chemistry, Center for Electro- & Photo-Responsive Molecules, Korea University) ;
  • Lee, Sang-Kyu (Department of Chemistry, Center for Electro- & Photo-Responsive Molecules, Korea University) ;
  • Jin, Jung-Il (Department of Chemistry, Center for Electro- & Photo-Responsive Molecules, Korea University) ;
  • Choi, Dong-Hoon (Department of Chemistry, Center for Electro- & Photo-Responsive Molecules, Korea University)
  • Published : 2006.12.31

Abstract

Tricyanopyrrolidene chromophores were prepared in order to compare their macroscopic nonlinear optical (NLO) properties with a conjugated structure through the long molecular axis. A thiophene or phenyl ring was tethered to an ethylenic bond; it may act as a lateral moiety to disrupt the planarity of a chromophore and lessen the electrostatic interaction. Thin film composites of these chromophores dissolved in amorphous polycarbonate (APC) were fabricated. Real time pole and probe method was employed to investigate the change of electro-optic (EO) signal during poling. The EO properties and their relaxation behaviors of the guest-host systems containing newly synthesized chromophores were investigated in detail.

Keywords

References

  1. L. R. Dalton, A. W. Harper, R. Ghosn, W. H. Steier, M. Ziari, H. Fetterman, Y. Shi, R. V. Mustacich, A. K-Y. Jen, and K. J. Shea, Chem. Mater., 7, 1060 (1995) https://doi.org/10.1021/cm00054a006
  2. L. R. Dalton, A. W. Harper, B. Wu, R. Ghosen, J. Laquindanum, Z. Liang, A. Hubbel, and C. Xu, Adv. Mater., 7, 519 (1995) https://doi.org/10.1002/adma.19950070603
  3. L. R. Dalton, A. Harper, A. Ren, F. Wang, G. Todorova, J. Chen, C. Zhang, and M. Lee, Ind. Eng. Chem. Res., 38, 8 (1999) https://doi.org/10.1021/ie9705970
  4. C. Samyn, T. Verbiest, and A. Persoons, Macromol. Rapid Commun., 21, 1 (2000) https://doi.org/10.1002/(SICI)1521-3927(20000101)21:1<1::AID-MARC1>3.0.CO;2-X
  5. K. R. Yoon, H. S. Lee, B. K. Rhee, and C. S. Jung, Macromol. Res., 12, 581 (2004) https://doi.org/10.1007/BF03218447
  6. P. G. Lacroix, Chem. Mater., 13, 3495 (2001) https://doi.org/10.1021/cm001239h
  7. K. V. Katti, K. Raghuraman, N. Pillarsetty, S. R. Karra, R. J. Gulotty, M. A. Chartier, and C. A. Langhoff, Chem. Mater., 14, 2436 (2002) https://doi.org/10.1021/cm025564b
  8. P. Zhu, M. E. van der Boom, H. Kang, G. Evmenenko, P. Dutta, and T. J. Marks, Chem. Mater., 14, 4982 (2002) https://doi.org/10.1021/cm020438t
  9. A. Facchetti, A. Abbotto, L. Beverina, M. E. van der Boom, P. Dutta, E. G. Vmenenko, G. A. Pagani, and T. J. Marks, Chem. Mater., 15, 1064 (2003) https://doi.org/10.1021/cm020929d
  10. F. Chaumel, H. Jiang, and A. Kakkar, Chem. Mater., 13, 3389 (2001) https://doi.org/10.1021/cm011017z
  11. M. Ahlheim, M. Barzoukas, P. V. Besworth, M. Blanchard- Desce, A. Fort, Z.-Y. Hu, S. R. Marder, J. W. Perry, C. Runser, M. Staehelin, and B. Zysset, Science, 271, 335 (1996) https://doi.org/10.1126/science.271.5247.335
  12. S. R. Marder, L.-P. Cheng, B. G. Tiemann, A. C. Friedli, M. Blanchard-Desce, J. W. Perry, and S. J. KindhOj, Science, 263, 511 (1994) https://doi.org/10.1126/science.263.5146.511
  13. M. Trollsas, C. Orrenius, F. Sahlen, U. W. Gedde, T. Norin, A. Hult, D. Hermann, P. Rudquist, L. Komitov, S. T. Lagerwall, and J. Lindstrom, J. Am. Chem. Soc., 118, 8542 (1996) https://doi.org/10.1021/ja961309e
  14. S. Song, S. J. Lee, B. R. Cho, D.-H. Shin, K. H. Park, C. J. Lee, and N. Kim, Chem. Mater., 11, 1406 (1999) https://doi.org/10.1021/cm9901313
  15. E. M. Breitung, C.-F. Shu, and R. J. McMahon, J. Am. Chem. Soc., 122, 1154 (2000) https://doi.org/10.1021/ja9930364
  16. P. R. Varanasi, A. K.-Y. Jen, J. Chandrasekhar, I. N. N. Namboothiri, and A. Rathna, J. Am. Chem. Soc., 118, 12443 (1996) https://doi.org/10.1021/ja960136q
  17. I. D. L. Albert, T. J. Marks, and M. A. Ratner, J. Am. Chem. Soc., 119, 6575 (1997) https://doi.org/10.1021/ja962968u
  18. M. Q. He, T. M. Leslie, and J. A. Sinicropi, Chem. Mater., 14, 2393 (2002) https://doi.org/10.1021/cm011734t
  19. A. Grunnet-Jepsen, C. L.Thompson, and W. E. Moerner, Science, 277, 549 (1997) https://doi.org/10.1126/science.277.5325.549
  20. S. R. Marder, B. Kippelen, A. K.-Y. Jen, and N. Peyghambarian, Nature, 388, 845 (1997)
  21. B. W. You, Z. Hou, and L. Yu, Adv. Mater., 16, 356, (2004) https://doi.org/10.1002/adma.200306133
  22. S.-H. Jang, J. Luo, N. M. Tucker, A. Leclercq, E. Zojer, M. A. Haller, T.-D. Kim, J.-W. Kang, K. Firestone, D. Bale, D. Lao, J. B. Benedict, D. Cohen, W. Kaminsky, B. Kahr, J.-L. Bredas, P. Reid, L. R. Dalton, and A. K.-Y. Jen, Chem. Mater., 18, 2982 (2006) https://doi.org/10.1021/cm052861i
  23. M. J. Cho, S. K. Lee, J. H. Lim, C. S. Hong, and D. H. Choi, J. Mater. Chem., submitted (2006)
  24. C. C. Teng and H. T. Man, Appl. Phys. Lett., 56, 1734 (1990) https://doi.org/10.1063/1.103107
  25. C. Zhang, C. Wang, L. R. Dalton, H. Zhang, and W. H. Steier, Macromolecules, 34, 253 (2001) https://doi.org/10.1021/ma001561d