Xylanase Production by Bacillus sp. A-6 Isolated from Rice Bran

  • Lee, Jun-Ho (Division of Animal Resources and Life Science, Sangji University) ;
  • Choi, Suk-Ho (Division of Animal Resources and Life Science, Sangji University)
  • Published : 2006.12.30

Abstract

A Bacillus sp. A-6 strain that produced xylanase was isolated from rice bran. The optimal temperature and pH for xylanase activity of the culture supernatant of Bacillus sp. A-6 were 40$^{\circ}C$ and pH 7, respectively. The optimal temperature and pH for xylanase production in the xylan medium were 30$^{\circ}C$ and pH 9, respectively. The optimal concentrations of oat spelt xylan and peptone for xylanase production were 0.5% and 1.5%, respectively. The best nitrogen sources for xylanase production was beef extract, but xylanase production was also supported comparably by tryptone and peptone. The bacterial growth in the optimal xylan medium reached stationary growth phase after 12 h of incubation. The xylanase production in the culture supernatant increased dramatically during the initial 12 h exponential growth phase and then remained constant at 23.8-24.5 unit/ml during the stationary growth phase. The pH of the culture medium decreased from 8.8 to 6.7 during the exponential growth phase and subsequently increased to 8.1 during the stationary growth phase. Rice bran, sorghum bran, and wheat bran as well as oat spelt xylan induced xylanase production. The xylanase production was repressed when glucose was added to the xylan-containing medium.

Keywords

References

  1. Adeola, O. and M. R. Bedford. 2004. Exogenous dietary xylanase ameliorates viscosity-induced anti-nutritional effects in wheat-based diets for White Pekin ducks (Anas platyrinchos domesticus). Br. J. Nutr. 92: 87-94 https://doi.org/10.1079/BJN20041180
  2. Archana, A. and T. Satyanarayana. 1997. Xylanase production by thermophilic Bacillus licheniformis A 99 in solid state fermentation. Enzyme Microbiol. Technol. 21: 12-17 https://doi.org/10.1016/S0141-0229(96)00207-4
  3. Aspinali, G. O. 1959. Structural chemistry of the hemicelluloses. Adv. Carbohydr. Chem. 14: 429-468
  4. Balakrishnan, H., M. C. Srinivasan, and M V. Rele. 1997. Extracellular protease activities in relation to xylanase excretion in alkalophilic Bacillus sp. Biotechnol. Lett. 18: 599-601
  5. Balows, A., W. J. Hausler Jr., K. L. Herrmann, H. D. Isenberg, and H. J. Shadomy. 1991. Manual of Clinical Microbiology, 5th Ed. American Society of Microbiology, U.S.A
  6. Bataillon, M., A. P. N. Cardinali, and F. Duchiron. 1998. Production of xylanases from a newly isolated alkalophilic thermophilic Bacillus sp. Biotechnol. Lett. 20: 1067-1071 https://doi.org/10.1023/A:1005415207188
  7. Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondai. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338 https://doi.org/10.1007/s002530100704
  8. Bernier, R. Jr., M. Desrochers, L. Jurasek, and M. G. Paice. 1983. Isolation and characterization of a xylanase from Bacillus subtilis. Appl. Environ. Microbiol. 46: 511-514
  9. Biely, P. 1985. Microbial xylanolytic systems. Trends Biotechonol. 3: 286-290 https://doi.org/10.1016/0167-7799(85)90004-6
  10. Blanco, A., T. Vidal, J. F. Colom, and F. I. J. Pastor. 1995. Purification and properties of xylanase A from alkali-tolerant Bacillus sp. strain BP-23. Appl. Environ. Microbiol. 61: 4468-4470
  11. Collins, T., G. Gerday, and G. Feller. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Mirobiol. Rev. 29: 3-23 https://doi.org/10.1016/j.femsre.2004.06.005
  12. Cowieson, S. J., M. Hruby, and M. Faurschou Isaksen. 2005. The effect of conditioning temperature and exogenous xylanase addition on the viscosity of wheat-based diets and the performance of broiler chickens. Br. Poult. Sci. 46: 717- 724 https://doi.org/10.1080/00071660500392506
  13. Dimitrov, P. L., M. S. Kambourova, R. D. Mandeva, and E. I. Emanuilova. 1997. Isolation and characterization of xylandegrading alkali-tolerant thermophiles. FEMS Microbiol. Lett. 157: 27-30 https://doi.org/10.1111/j.1574-6968.1997.tb12748.x
  14. Esteben, R., J. R. Villanueva, and T. G. Villa. 1992. ${\beta}-_D-$Xylanases of Bacillus circulans WL-12. Can. J. Microbiol. 28: 733-793 https://doi.org/10.1139/m82-112
  15. Graham, H., P. H. Simmins, and J. Sands. 2003. Reducing environmental pollution using animal feed enzymes. Commun. Agric. Appl. Biol. Sci. 68: 285-289
  16. Hong, H. A., L. H. Duc, and S. M. Cutting. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29: 813-835 https://doi.org/10.1016/j.femsre.2004.12.001
  17. Johnvesly, B., S. Virupakshi, G. N. Patil, Ramalingam, and G. R. Naik. 2002. Cellulase-free thermostable alkaline xylanase from thermophilic and alkalophilic Bacillus sp. JB- 99. J. Microbiol. Biotechnol. 12: 153-156
  18. Khasin, A., I. Alchanati, and Y. Shoham. 1993. Purification and characterization of thermostable xylanase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 59: 1725- 1730
  19. Kim, K. C., S.-S. Yoo, Y.-A Oh, and S.-J. Kim. 2003. Isolation and characteristics of Trichoderma harzianum FJ1 producing cellulases and xylanase. J. Microbiol. Biotechnol. 13: 1-8
  20. Krishina, C. 2005. Solid-state fermentation systems - an overview. Crit. Rev. Biotechnol. 25: 1-30 https://doi.org/10.1080/07388550590925383
  21. Kulkarni, N., A. Shendye, and M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456 https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
  22. Lee, Y.-E. and P. O. Lim. 2004. Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG- 22. J. Microbiol. Biotechnol. 14: 1014-1021
  23. Mandels, M. and D. Stenberg. 1976. Recent advances in cellulase technology. J. Ferment. Technol. 54: 267-286
  24. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  25. Nakamura, S., K. Wakabayashi, R. Nakai, R. Aono, and K. Horikoshi. 1993. Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Appl. Environ. Microbiol. 59: 2311-2316
  26. Polizeli, M. L., A. C. Rizzatti, R. Monti, H. F. Terenzi, J. A. Jorge, and D. S. Amorim. 2005. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 67: 577-591 https://doi.org/10.1007/s00253-005-1904-7
  27. Ratanakhanokchal, K., K. L. Kyu, and M. Tanticharoen. 1999. Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl. Environ. Microbiol. 65: 694-697
  28. Sa-Pereira, P., M. Costa-Ferreira, and M. R. Aires-Barros. 2002. Enzymatic properties of a neutral endo-1,3(4)-$\beta$-xylanase Xyl II from Bacillus subtilis. J. Biotechnol. 94: 265-275 https://doi.org/10.1016/S0168-1656(01)00436-9
  29. Sunna, A. and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67 https://doi.org/10.3109/07388559709146606
  30. Tachaapaikoon, C., Y. S. Lee, K. Rantanakhanokchai, S. Pinitglang, K. L. Kyu, M. S. Rho, and S.-K. Lee. 2006. Purification and characterization of two endoxylanases from an alkaliphilic Bacillus halodurans C-1. J. Microbiol. Biotechnol. 16: 613-618
  31. Wang, Z. R., S. Y. Qiao, W. Q. Lu, and D. F. Li. 2005. Effects of enzyme supplementation on performance, nutrient digestibility, gastrointestinal morphology, and volatile fatty acid profiles in the hindgut of broilers fed wheat-based diets. Poult. Sci. 84: 875-881 https://doi.org/10.1093/ps/84.6.875
  32. Wong, K. K. Y. and J. N Saddler. 1992. Application of hemicellulases in the food, feed, and pulp and paper industries, pp. 127-143. In P. P. Coughlen and G. P. Hazlewood (eds.). Hemicellulose and Hemicellulases. Portland Press, London