A Novel Approach to the Production of Hyaluronic Acid by Streptococcus zooepidemicus

  • Kim, Sae-Jin (School of Life Sciences and Biotechnology, Korea University) ;
  • Park, Sung-Yurb (Department of Fermentation, Chong Kun Dang Bio Corporation) ;
  • Kim, Chan-Wha (School of Life Sciences and Biotechnology, Korea University)
  • Published : 2006.12.30

Abstract

It has been shown that the initial conditions of bacterial cultivation are extremely important for the successful production of hyaluronic acid (HA) by fermentation. We investigated several parameters that affect cell growth rate and the productivity and molecular weight of hyaluronic acid--i.e., agitation speed, aeration rate, culture temperature, pH, and pressure--to determine how to optimize the production of HA by Streptococcus zooepidemicus on an industrial scale. Using a 30-1 jar fermentor under laboratory conditions, we achieved maximum HA productivity and biomass when the agitation speed and aeration rate were increased simultaneously. By shifting the temperature downward from 35$^{\circ}C$ to 32$^{\circ}C$ at key levels of cell growth during the fermentation process, we were able to obtain HA with a molecular weight of $2.8{\times}10^6$ at a productivity of 5.3 g/l. Moreover, we reproduced these optimized conditions successfully in three 30-1 jar fermentors. By reproducing these conditions in a 3-$m^3$ fermentor, we were able to produce HA with a molecular weight of $2.9{\times}10^6$ at a productivity of 5.4 g/l under large-scale conditions.

Keywords

References

  1. Armstrong, D. C. and M. R. Johns. 1997. Culture conditions affect the molecular weight properties of hyaluronic acid produced by Streptococcus zooepidemicus. Appl. Environ. Microbiol. 63: 2759-2764
  2. Armstrong, D. C., M. J. Cooney, and M. R. Johns. 1997. Growth and amino acid requirements of hyaluronic-acidproducing Streptococcus zooepidemicus. Appl. Microbiol. Biotechnol. 47: 309-312 https://doi.org/10.1007/s002530050932
  3. Blank, L. M., R. L. McLaughlin, and L. K. Nielsen. 2005. Stable production of hyaluronic acid in Streptococcus zooepidemicus chemostats operated at high dilution rate. Biotechnol. Bioeng. 90: 685-693 https://doi.org/10.1002/bit.20466
  4. Brunt, J. V. 1986. More to hyaluronic acid than meets the eye. Biotechnology 4: 780-782 https://doi.org/10.1038/nbt0986-780
  5. Chong, B. F. and L. K. Nielsen. 2003. Aerobic cultivation of Streptococcus zooepidemicus and the role of NADH oxidase. Biochem. Eng. J. 16: 153-162 https://doi.org/10.1016/S1369-703X(03)00031-7
  6. Chong, B. F. and L. K. Nielsen. 2003. Amplifying the cellular reduction potential of Streptococcus zooepidemicus. J. Biotechnol. 100: 33-41 https://doi.org/10.1016/S0168-1656(02)00239-0
  7. Chong, B. F., L. M. Blank, R. L. McLaughlin, and L. K. Nielsen. 2005. Microbial hyaluronic acid production. Appl. Microbiol. Biotechnol. 66: 341-351 https://doi.org/10.1007/s00253-004-1774-4
  8. Cleary, P. and A. Larkin. 1979. Hyaluronic acid capsule: Strategy for oxygen resistance in group A streptococci. J. Bacteriol. 140: 1090-1097
  9. Cooney, M. J., L. T. Goh, P. L. Lee, and M. R. Johns. 1997. Structured model-based analysis and control of the hyaluronic acid fermentation by Streptococcus zooepidemicus: Physiological implications of glucose and complex-nitrogenlimited growth. Biotechnol. Prog. 15: 898-910 https://doi.org/10.1021/bp990078n
  10. Dische, Z. 1947. A new specific color reaction of hexuronic acids. J. Biol. Chem. 167: 189-198
  11. Hasegawa, S., M. Nagatsuru, M. Shibutani, S. Yamamoto, and S. Hasebe. 1999. Productivity of concentrated hyaluronic acid using a Maxblen$d^{\circledR}$ fermentor. J. Biosci. Bioeng. 88: 68-71 https://doi.org/10.1016/S1389-1723(99)80178-9
  12. Johns, M. R., L. T. Goh, and A. Oeggerli. 1994. Effect of pH, agitation and aeration on hyaluronic acid production by Streptococcus zooepidemicus. Biotechnol. Lett. 16: 507- 512 https://doi.org/10.1007/BF01023334
  13. Kim, J. H., S. J. Yoo, D. K. Oh, Y. G. Kweon, D. W. Park, C. H. Lee, and G. H. Gil. 1996. Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid. Enzyme Microb. Technol. 19: 440-445 https://doi.org/10.1016/S0141-0229(96)00019-1
  14. Liesegang, T. J. 1990. Viscoelastic substance in ophthalmology. Survey Ophthalmol. 34: 268-293 https://doi.org/10.1016/0039-6257(90)90027-S
  15. Markovitz, A., J. Cifonelli, and A. Dorfman. 1959. The biosynthesis of hyaluronic acid by group A streptococcus. J. Biol. Chem. 234: 2343-2350
  16. Meyer, K. and J. W. Palmer. 1934. The polysaccharide of the vitreous humor. J. Biol. Chem. 107: 629-634
  17. O'Regan, M., I. Martini, F. Crescenzi, C. De Luca, and M. Lansing. 1994. Molecular mechanisms and genetics of hyaluronan biosynthesis. Int. J. Biol. Macromol. 16: 283- 286 https://doi.org/10.1016/0141-8130(94)90056-6
  18. Phrem, P. 1983. Synthesis of hyaluronate in differentiated teratocarcinoma cells: Characterization of the synthase. Biochem. J. 211: 181-189 https://doi.org/10.1042/bj2110181
  19. Phrem, P. 1983. Synthesis of hyaluronate in differentiated teratocarcinoma cells: Mechanism of chain growth. Biochem. J. 211: 191-198 https://doi.org/10.1042/bj2110191
  20. SAS Institute. 1990. SAS/STAT user's guide, version 6, Vol. 2, 4th Ed. Gray, NC: SAS Institute Inc
  21. Tan, S. W., M. R. Johns, and P. F. Greenfield. 1990. Hyaluronic acid-versatile biopolymer. Aust. J. Biotechnol. 4: 38-43
  22. Thompson, D. 1982. Response surface experimentation. J. Food Process. Preserv. 6: 155-188
  23. Van de Rijn, I. 1983. Streptococcal hyaluronic acid: Proposed mechanism of degradation and loss of synthesis during stationary phase. J. Bacteriol. 156: 1059-1065