Browse > Article

A Novel Approach to the Production of Hyaluronic Acid by Streptococcus zooepidemicus  

Kim, Sae-Jin (School of Life Sciences and Biotechnology, Korea University)
Park, Sung-Yurb (Department of Fermentation, Chong Kun Dang Bio Corporation)
Kim, Chan-Wha (School of Life Sciences and Biotechnology, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.12, 2006 , pp. 1849-1855 More about this Journal
Abstract
It has been shown that the initial conditions of bacterial cultivation are extremely important for the successful production of hyaluronic acid (HA) by fermentation. We investigated several parameters that affect cell growth rate and the productivity and molecular weight of hyaluronic acid--i.e., agitation speed, aeration rate, culture temperature, pH, and pressure--to determine how to optimize the production of HA by Streptococcus zooepidemicus on an industrial scale. Using a 30-1 jar fermentor under laboratory conditions, we achieved maximum HA productivity and biomass when the agitation speed and aeration rate were increased simultaneously. By shifting the temperature downward from 35$^{\circ}C$ to 32$^{\circ}C$ at key levels of cell growth during the fermentation process, we were able to obtain HA with a molecular weight of $2.8{\times}10^6$ at a productivity of 5.3 g/l. Moreover, we reproduced these optimized conditions successfully in three 30-1 jar fermentors. By reproducing these conditions in a 3-$m^3$ fermentor, we were able to produce HA with a molecular weight of $2.9{\times}10^6$ at a productivity of 5.4 g/l under large-scale conditions.
Keywords
Hyaluronic acid; Streptococcus zooepidemicus; fermentation;
Citations & Related Records

Times Cited By Web Of Science : 21  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Armstrong, D. C., M. J. Cooney, and M. R. Johns. 1997. Growth and amino acid requirements of hyaluronic-acidproducing Streptococcus zooepidemicus. Appl. Microbiol. Biotechnol. 47: 309-312   DOI
2 Cleary, P. and A. Larkin. 1979. Hyaluronic acid capsule: Strategy for oxygen resistance in group A streptococci. J. Bacteriol. 140: 1090-1097
3 Dische, Z. 1947. A new specific color reaction of hexuronic acids. J. Biol. Chem. 167: 189-198
4 Markovitz, A., J. Cifonelli, and A. Dorfman. 1959. The biosynthesis of hyaluronic acid by group A streptococcus. J. Biol. Chem. 234: 2343-2350
5 Meyer, K. and J. W. Palmer. 1934. The polysaccharide of the vitreous humor. J. Biol. Chem. 107: 629-634
6 SAS Institute. 1990. SAS/STAT user's guide, version 6, Vol. 2, 4th Ed. Gray, NC: SAS Institute Inc
7 Armstrong, D. C. and M. R. Johns. 1997. Culture conditions affect the molecular weight properties of hyaluronic acid produced by Streptococcus zooepidemicus. Appl. Environ. Microbiol. 63: 2759-2764
8 Chong, B. F. and L. K. Nielsen. 2003. Amplifying the cellular reduction potential of Streptococcus zooepidemicus. J. Biotechnol. 100: 33-41   DOI   ScienceOn
9 Liesegang, T. J. 1990. Viscoelastic substance in ophthalmology. Survey Ophthalmol. 34: 268-293   DOI   ScienceOn
10 Kim, J. H., S. J. Yoo, D. K. Oh, Y. G. Kweon, D. W. Park, C. H. Lee, and G. H. Gil. 1996. Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid. Enzyme Microb. Technol. 19: 440-445   DOI   ScienceOn
11 Tan, S. W., M. R. Johns, and P. F. Greenfield. 1990. Hyaluronic acid-versatile biopolymer. Aust. J. Biotechnol. 4: 38-43
12 Chong, B. F., L. M. Blank, R. L. McLaughlin, and L. K. Nielsen. 2005. Microbial hyaluronic acid production. Appl. Microbiol. Biotechnol. 66: 341-351   DOI
13 O'Regan, M., I. Martini, F. Crescenzi, C. De Luca, and M. Lansing. 1994. Molecular mechanisms and genetics of hyaluronan biosynthesis. Int. J. Biol. Macromol. 16: 283- 286   DOI   ScienceOn
14 Phrem, P. 1983. Synthesis of hyaluronate in differentiated teratocarcinoma cells: Mechanism of chain growth. Biochem. J. 211: 191-198   DOI
15 Thompson, D. 1982. Response surface experimentation. J. Food Process. Preserv. 6: 155-188
16 Hasegawa, S., M. Nagatsuru, M. Shibutani, S. Yamamoto, and S. Hasebe. 1999. Productivity of concentrated hyaluronic acid using a Maxblen$d^{\circledR}$ fermentor. J. Biosci. Bioeng. 88: 68-71   DOI   ScienceOn
17 Chong, B. F. and L. K. Nielsen. 2003. Aerobic cultivation of Streptococcus zooepidemicus and the role of NADH oxidase. Biochem. Eng. J. 16: 153-162   DOI   ScienceOn
18 Blank, L. M., R. L. McLaughlin, and L. K. Nielsen. 2005. Stable production of hyaluronic acid in Streptococcus zooepidemicus chemostats operated at high dilution rate. Biotechnol. Bioeng. 90: 685-693   DOI   ScienceOn
19 Cooney, M. J., L. T. Goh, P. L. Lee, and M. R. Johns. 1997. Structured model-based analysis and control of the hyaluronic acid fermentation by Streptococcus zooepidemicus: Physiological implications of glucose and complex-nitrogenlimited growth. Biotechnol. Prog. 15: 898-910   DOI   ScienceOn
20 Johns, M. R., L. T. Goh, and A. Oeggerli. 1994. Effect of pH, agitation and aeration on hyaluronic acid production by Streptococcus zooepidemicus. Biotechnol. Lett. 16: 507- 512   DOI
21 Brunt, J. V. 1986. More to hyaluronic acid than meets the eye. Biotechnology 4: 780-782   DOI
22 Phrem, P. 1983. Synthesis of hyaluronate in differentiated teratocarcinoma cells: Characterization of the synthase. Biochem. J. 211: 181-189   DOI
23 Van de Rijn, I. 1983. Streptococcal hyaluronic acid: Proposed mechanism of degradation and loss of synthesis during stationary phase. J. Bacteriol. 156: 1059-1065