The Effect of Juglandis Semen Extract on Improvement of tBHT-induced $Na^+-pump$ Inactivity in Rabbit Cerebral Cortex

호도약침액이 가토 뇌조직의 $Na^+-pump$활성 장애 개선에 미치는 영향

  • Kim, Dong-Hoon (Kim Dong-hoon Oriental Medical Clinic) ;
  • Song, Jong-Wook (Graduate Program in Neuroscience, Inje University) ;
  • Lee, Sang-Kil (Department of Physical Therapy, College of Biomedical Science & Engineering, Inje University) ;
  • Kim, Joo-Heon (Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University) ;
  • Hong, Yong-Geun (Graduate Program in Neuroscience, College of Biomedical Science & Engineering, Inje University)
  • 김동훈 (김동훈 한의원) ;
  • 송종욱 (인제대학교 대학원 뇌과학협동과정, 인제대학교 의생명공학대학) ;
  • 이상길 (인제대학교 물리치료학과) ;
  • 김주헌 (경상대학교 수의과대학 수의학과 및 동물의학연구소) ;
  • 홍용근 (인제대학교 대학원 뇌과학협동과정)
  • Published : 2006.12.30

Abstract

This study was undertaken to determine whether Juglandis Semen (JAS) extract exerts protective effect against oxidant-induced inhibition of $Na^+-pump$ activity in cerebral cortex. $Na^+-pump$ activity was estimated by measuring ouabain-sensitive oxygen consumption. The oxygen consumption significantly inhibited by 1mM t-butylhydroperoxide (tBHP), which was prevented by addition of 2% JAS extract. The oxygen consumption was increased by an increase in $Na^+$ concentration from 5 to 100 mM, $K^+$ concentration from 0.5 to 10 mM, and $Mg^{2+}$ concentration from 0.2 to 5 mM. These changes in ion concentrations did not affect the inhibitory effect of tBHP and protective action of JAS on oxygen consumption. tBHP (l mM) produced a significant increase in lipid peroxidation in cerebral cortex, which was prevented by 2% JAS extraction. These results suggest that JAS exerts protective effect against tBHP-induced inhibition of $Na^+-pump$ activity in the cerebral cortex, probably through action as antioxidant.

Keywords

References

  1. Albers, R. W. (1967) Biochemical aspects of active transport, Ann. Rev. Biochem., 36: 727-756 https://doi.org/10.1146/annurev.bi.36.070167.003455
  2. Hokin, L. E. and Dahl, J. L. (1972) The sodium-potassium adenosinetriphosphatase, In: Metabolic Pathways, 3rd ed., VI. Metabolic Transport, Edited by Hokin KE, 270-315, Academic Press Inc
  3. Schwartz, A., Lindenmayer, G E. and Allen, J. C. (1975) The sodium-potassium adenosine triphosphatase, Phamacological, physiological and biochemical aspects. Pharmacol Rev., 27: 3-134
  4. Olanow, C. W. (1993) A radical hypothesis for neurode-genration, Trends-Neunosci., 16: 439-444 https://doi.org/10.1016/0166-2236(93)90070-3
  5. Chance, B., Sies, H. and Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs, Physiol. Rev., 59: 527-605 https://doi.org/10.1152/physrev.1979.59.3.527
  6. Arstila, A. U. (1972) Microsomal lipid peroxidation, Morphological Characterization Science, 175: 530-533 https://doi.org/10.1126/science.175.4021.530
  7. Koko, K., Kato, M., Matsuoka, T. and Mustapha, A. (1988) Depression of membrane-bound $Na^{+}-K^{+}-ATPase$ activity induced by free radicals and by ischemia of kidney, Am. J. Physiol., 254: C330-C337
  8. Andreoli, V. (1993) Phosphatidyl serine synthesis in rat cerebral cortex: effects of hypoxia, hypocapnia and development, Mol-Cell-Biochem., 126: 101-107 https://doi.org/10.1007/BF00925687
  9. Sun, A. Y. (1972) The effect of lipoxidation on sympatosomal $(Na0^{+}+K^{+})-ATPase$ isolated from the cerebral cortex of squiral monkey, Biophys Acta, 266: 350-360 https://doi.org/10.1016/0005-2736(72)90093-4
  10. 홍원식 (1983) 정교황제내경소문, 39, 42, 57, 81, 159, 174, 209, 327, 동양의학연구원출판부, 서울
  11. 구본홍, 이경섭, 배형섭, 김영석, 이원철 (1991) 동의심계내과학, 27, 36, 서원당, 서울
  12. 양동희 (1991) 본초비요해석, 432, 국흥출판사, 신죽
  13. 리시진 (1991) 본초강목(하권), 1803-1804, 일중사, 서울
  14. 황궁 (1981 ), 본초구진, 49, 굉업서국, 대북
  15. 윤길영 (1992) 동의림상방제학, 606, 명보출판사, 서울
  16. 지형주, 이상인 (1989), 대한약전의 한약(생약)규격집, 421, 한국 메디칼인덱스사, 서울
  17. 김영해, 김갑성 (1996) 호도약침액의 항산화효과에 대한 연구 II. oxidant에 의한 세포손상을 방지하는 기전, 대한 침구학회지, 13(2): 54-66
  18. Bradford, M. M. (1976) A rapid and sensitive method for the quatitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72: 248-524 https://doi.org/10.1016/0003-2697(76)90527-3
  19. Uchiyama, M. and Mihara, M. (1978) Determination of malonaldehyde precusor in tissue by thiobarbituric acid test, Anal. Biochem. 86: 271-278 https://doi.org/10.1016/0003-2697(78)90342-1
  20. Snedecor, G H. and Cochran, W. G (1967) Statistical methods, 6th ed. 432-465, Iowa State Univ. Ames, USA
  21. 신민교 (1986) 원색림상본초학, 194, 영림출판사, 서울
  22. 이재희 (1985) 도설 한방약리.약능의 임상응용, 577, 학림사, 서울
  23. 리상인 외 (1986) 한약림상응용, 194-195, 성보사, 서울
  24. Susan Budavari (1996) Merck Index 12th edition, 259, Merck & Co. Inc. New Jersey, USA
  25. 강두희 (1988) 인체생리학 3판, 20-27, 신광출판사, 서울
  26. Akera, T, Gubitz, R. H., Brody, T. M. and Tobin, T. (1979) Effects of monovalent cations on ($Na^{+}+K^{+}$)-ATPase in rat brain slices, Eur. J. Pharmacol., 55: 281-292 https://doi.org/10.1016/0014-2999(79)90196-1
  27. Gubitz, R. H., Akera, T. and Brody, T. M. (1977) Control of brain slice respiration by $(Na^{+}-K^{+})-activated$ adenosine triphosphatase and the effects of enzyme inhibitors, Biochem Biophy Acta, 459: 263-277 https://doi.org/10.1016/0005-2728(77)90027-5
  28. Floyd, R. A. (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia, FASEB J., 4: 2587-2597 https://doi.org/10.1096/fasebj.4.9.2189775
  29. Reiter, R. J. (1995) Oxidative processes and antioxidative defense mechanisms in the aging brain, FASEB J., 9: 526-533 https://doi.org/10.1096/fasebj.9.7.7737461
  30. Mccord, J. M. (1985) Oxygen-derived free radicals in postischemic tissue injury, New Engl. J. Med., 312: 159-163 https://doi.org/10.1056/NEJM198501173120305
  31. Halliwell, B. (1989) Oxidants and the central nervous system-some fundamental questions. Is oxidant damage relevant to Pakinson's disease, Alzheimer's disease, traumatic injury or stroke', Acta Neurol Scand., 126: 23-33
  32. Traystman, R. J. Oxygen radical mechanisms of brain injury following ischemia and reperfusion, J. Apple Physiol., 71: 1185-1195
  33. Brondy, S. C. and Lebel, C. P. (1993) The relationship between cytotoxicity and oxidative stress in the CNS, Free Radic Biol. Med., 14: 633-642 https://doi.org/10.1016/0891-5849(93)90144-J
  34. Halliwell, B. (1995) Antioxidant characterization, methodology and mechanism, Biochem Pharmacol., 49: 1341-1348 https://doi.org/10.1016/0006-2952(95)00088-H
  35. Jaeschke, H. (1995) Mechanisms of oxidant stress-induced acute tissue injury, Proc. Soc. Exp. Biol. Med., 209: 104-111
  36. Skou, J. C. (1960) Further investigation on a $Ca^{2+}+Na^+-activated$ adenosine triphosphatase, possibly related to the active, linked transport of $Na^+$ and $K^+$ across the nerve membrane, Biophys Acta, 42: 6-23 https://doi.org/10.1016/0006-3002(60)90746-0
  37. Whittam, R. and Ager, M. E. (1964) Vectoral aspects of adenosine-triphosphatase activity in erythrocyte membrane, Biochem J., 93: 337-348 https://doi.org/10.1042/bj0930337