참고문헌
- Aulthouse AL, Beck M, Griffey E, Sanford J, Arden K, Machado MA, Horton WA. Expression of the human chondrocyte phenotype in vitro. In Vitro Cell Dev Biol 1989; 25: 659-668 https://doi.org/10.1007/BF02623638
- Benya PD. Shaffer JD. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 1982; 30: 215-224 https://doi.org/10.1016/0092-8674(82)90027-7
- Bonaventure J, Kadhom N, Cohen-Solal L, Ng KH, Bourguignon J, Lasselin C, Freisinger P. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp Cell Res 1994; 212: 97-104 https://doi.org/10.1006/excr.1994.1123
- Bounelis P, Daniel JC. The effect of ascorbate on embryonic chick sternal chondrocytes cultured in agarose. Tissue Cell 1983; 15: 683-693 https://doi.org/10.1016/0040-8166(83)90043-5
- Brittberg M, Nilsson A, Lindahl A, Ohlsson C, Peterson L. Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop 1996; 326: 270-283 https://doi.org/10.1097/00003086-199605000-00034
- Daniel JC, Pauli BU, Kuettner KE. Synthesis of cartilage matrix by mammalian chondrocytes in vitro. III. Effects of ascorbate. J Cell Biol 1984; 99: 1960-1969 https://doi.org/10.1083/jcb.99.6.1960
- de Haart M, Marijnissen WJ, van Osch GJ, Verhaar JA. Optimization of chondrocyte expansion in culture. Effect of TGF -2, bFGF and L-ascorbic acid on bovine articular chondrocytes. Acta Orthop Scand 1999; 70: 55-61 https://doi.org/10.3109/17453679909000959
- Dozin B, Quarto R, Campanile G, Cancedda R. In vitro differentiation of mouse embryo chondrocytes: requirement for ascorbic acid. Eur J Cell Biol 1992; 58: 390-394
- Fragonas E, Valente M, Pozzi-Mucelli M, Toffanin R, Rizzo R, Silvestri F, Vittur F. Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate. Biomaterials 2000; 21: 795-801 https://doi.org/10.1016/S0142-9612(99)00241-0
- Freyria AM, Ronziere MC, Roche S, Rousseau CF, Herbage D. Regulation of growth, protein synthesis, and maturation of fetal bovine epiphyseal chondrocytes grown in high-density culture in the presence of ascorbic acid, retinoic acid, and dihydrocytochalasin B. J Cell Biochem 1999; 76: 84-98
- Grande DA, Singh IJ, Pugh J. Healing of experimentally produced lesions in articular cartilage following chondrocyte transplantation. Anat Rec 1987; 218: 142-148 https://doi.org/10.1002/ar.1092180208
- Guo JF, Jourdian GW, MacCallum DK. Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect Tissue Res 1989; 19: 277-297 https://doi.org/10.3109/03008208909043901
- Hauselmann HJ, Fernandes RJ, Mok SS, Schmid TM, Block JA, Aydelotte MB, Kuettner KE, Thonar EJ. Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci 1994; 107: 17-27
- Hering TM, Kollar J, Huynh TD, Varelas JB, Sandell LJ. Modulation of extracellular matrix gene expression in bovine high-density chondrocyte cultures by ascorbic acid and enzymatic resuspension. Arch Biochem Biophys 1994; 314: 90-98 https://doi.org/10.1006/abbi.1994.1415
- Ivanov VO, Ivanova SV, Niedzwiecki A. Ascorbate affects proliferation of guinea-pig vascular smooth muscle cells by direct and extracellular matrix-mediated effects. J Mol Cell Cardiol 1997; 29: 3293-3303 https://doi.org/10.1006/jmcc.1997.0555
- Kim G, Okumura M, Bosnakovski D, Ishiguro T, Park CH, Kadosawa T, Fujinaga T. Effects of ascorbic acid on proliferation and biological properties of bovine chondrocytes in alginate beads. Jpn J Vet Res 2003; 51: 83-94
- Lemare F, Steimberg N, Le Griel C, Demignot S, Adolphe M. Dedifferentiated chondrocytes cultured in alginate beads: restoration of the differentiated phenotype and of the metabolic responses to interleukin-1. J Cell Physiol 1998; 176: 303-313 https://doi.org/10.1002/(SICI)1097-4652(199808)176:2<303::AID-JCP8>3.0.CO;2-S
- Marijnissen WJ. van Osch GJ, Aigner J, Verwoerd-Verhoef HL, Verhaar JA. Tissue-engineered cartilage using serially passaged articular chondrocytes. Chondrocytes in alginate, combined in vivo with a synthetic (E210) or biologic biodegradable carrier (DBM). Biomaterials 2000; 21: 571-580 https://doi.org/10.1016/S0142-9612(99)00218-5
- McAlindon TE, Jacques P, Zhang Y, Hannan MT, Aliabadi P, Weissman B, Rush D, Levy D, Felson DT. Do antioxidant micronutrients protect against the development and progression of knee osteoarthritis? Arthritis Rheum 1996; 39: 648-656 https://doi.org/10.1002/art.1780390417
- McDevitt CA, Lipman JM, Ruemer RJ, Sokoloff, L. Stimulation of matrix formation in rabbit chondrocyte cultures by ascorbate. 2. Characterization of proteoglycans. J Orthop Res 1988; 6: 518-524 https://doi.org/10.1002/jor.1100060407
- Meacock SC, Bodmer JL, Billingham ME. Experimental osteoarthritis in guinea-pigs. J Exp Pathol 1990; 71: 279-293
- Paige KT, Cima LG, Yaremchuk MJ, Vacanti JP, Vacanti CA. Injectable cartilage. Plast Reconstr Surg 1995; 96: 1390-1398 https://doi.org/10.1097/00006534-199511000-00024
- Ronziere MC, Roche S, Gouttenoire J, Demarteau O, Herbage D, Freyria AM. Ascorbate modulation of bovine chondrocyte growth, matrix protein gene expression and synthesis in three-dimensional collagen sponges. Biomaterials 2003; 24: 851-861 https://doi.org/10.1016/S0142-9612(02)00418-0
- Schwartz ER, Oh WH, Leveille CR. Experimentally induced osteoarthritis in guinea pigs: metabolic responses in articular cartilage to developing pathology. Arthritis Rheum 1981; 24: 1345-1355 https://doi.org/10.1002/art.1780241103