DOI QR코드

DOI QR Code

Selection of Antagonistic Bacteria for Biocontrol of Botrytis cinerea Causing Gray Mold on Vitis spp

포도 잿빛곰팡이병의 생물적 방제를 위한 길항세균 선발

  • Seo, Sang-Tae (Horticultural Environment Division, National Horticultural Research Institute, Rural Development Administration) ;
  • Park, Jong-Han (Horticultural Environment Division, National Horticultural Research Institute, Rural Development Administration) ;
  • Han, Kyoung-Suk (Horticultural Environment Division, National Horticultural Research Institute, Rural Development Administration) ;
  • Cheong, Seung-Ryong (Horticultural Environment Division, National Horticultural Research Institute, Rural Development Administration)
  • Published : 2006.12.01

Abstract

Botrytis cinerea Pers. was found to be highly virulent to the grapevine plant, especially in greenhouse condition. Pseudomonas species play key roles for the biocontrol of many plant diseases especially in soil. Of the 83 isolates of Pseudomonas spp., a bacterial strain P84, isolated from tomato rhizosphere, was shown to suppress a wide range of phytopathogenic fungi in vitro. The isolate was identified as Pseudomonas putida on the basis of its bacteriological and genetic characteristics. The P. putida P84 strain carry the phlD gene for 2,4-diacetylphloroglucinol biosynthesis and may produce the antibiotics as an antagonistic mechanism involved in biocontrol. The antagonistic activity of the bacterium has a promising implication for its use as a biocontrol agent to control grapevine gray mold.

Botrytis cinerea에 의한 포도 잿빛곰팡이병은 특히 하우스 재배시 큰 피해를 주는 병원 진균이다. Pseudomonas속 세균들은 토양 미생물중 가장 잘 연구되어 있고, 토양 내에서 중요한 역할을 담당하고 있다. 근권토양에서 분리한 형광성 Pseudomonas속 세균 83균주 중 P84균주는 실내 항균력 실험결과 다양한 식물병원진균(Phytophthora capsici, Sclerotium spp., Botryosphaeria dothidea, Fusarium spp.)에 대해 항균효과를 나타내었다. 생리적 실험과 유전적 실험결과 P84균주는 P. putida로 동정되었다. 이 세균의 항균력은 항생물질(2,4-diacetylphloroglucinol)의 생산과 관련되어 있는 것으로 사료되며, 이 세균이 포도 잿빛곰팡이병의 생물적 방제에 이용될 수 있는 가능성이 시사되었다.

Keywords

References

  1. De La Fuente, L., Thomashow, L. S., Weller, D. M., Bajsa, N., Quagliotto, L., Chernin, L. and Arias, A. 2004. Pseudomonas fluorescens UP61 isolated from birdsfoot trefoil rhizosphere produces multiple antibiotics exerts a broad spectrum of biocontrol activity. Eur. J. Plant Pathol. 110: 671-681 https://doi.org/10.1023/B:EJPP.0000041569.35143.22
  2. Elad, Y. 1994. Biological control of grape grey mould by Trichoderma harzianum. Crop Protect. 13: 35-38 https://doi.org/10.1016/0261-2194(94)90133-3
  3. Gould, A. B., Kobayashi, D. Y. and Bergen, M. S. 1996. Identification of bacteria for biological control of Botrytis cinerea on petunia using a petal disk assay. Plant Dis. 80: 1029-1033 https://doi.org/10.1094/PD-80-1029
  4. King, E. O., Ward, M. K. and Raney, D. E. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44: 301-307
  5. Kloepper, J. W., Leong, J., Teintze, M. and Schroth, M. N. 1980. Pseudomonas siderophores: a mechanism explaining diseasesuppressive soil. Curr. Microbiol. 4: 317-320 https://doi.org/10.1007/BF02602840
  6. Latorre, B. A., Agosin, E., San Martin, R. and Vasquez, G. S. 1997. Effectiveness of conidia of Trichoderma harzianum produced by liquid fermentation against Botrytis bunch rot of table grape in Chile. Crop Protect. 16: 209-214 https://doi.org/10.1016/S0261-2194(96)00102-0
  7. Latorre, B. A., Spadaro, I. and Rioja, M. E. 2002. Occurrence of resistant strains of Botrytis cinerea to anilinopyrimidine fungicides in table grapes in Chile. Crop Protect. 21: 957-961 https://doi.org/10.1016/S0261-2194(02)00074-1
  8. Lee, S., Lee, J., Kim, Y. K., Heu, S. and Ra, D. S. 2005. Bacterial blight of sesame caused by Xanthomonas campestris pv. seasmi. Res. Plant Dis. 11: 146-151 https://doi.org/10.5423/RPD.2005.11.2.146
  9. Mari, M., Guizzardi, M. and Pratella, G. C. 1996. Biological control of gray mold in pears by antagonistic bacteria. Biol. Control. 7: 30-37 https://doi.org/10.1006/bcon.1996.0060
  10. Miller, L. T. 1982. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J. Clin. Microbiol. 16: 584-586
  11. Picard, C., Di Cello, F., Ventura, M., Fani, R. and Guckert, A. 2000. Frequency and biodiversity of 2,4-Diacetylphloroglucinol -producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl. Environ. Microbiol. 66: 948-955 https://doi.org/10.1128/AEM.66.3.948-955.2000
  12. Raaijmakers, J. M., Weller, D. M. and Thomashow, L. S. 1997. Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl. Environ. Microbiol. 63: 881-887
  13. Rosslenbroich, H. J. and Stuelber, D. 2000. Botrytis cinerea - history of chemical control and novel fungicides for its management. Crop Protect. 19: 557-561 https://doi.org/10.1016/S0261-2194(00)00072-7
  14. Scarpellini, M., Franzetti, L. and Galli, A. 2004. Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microbiol. Lett. 236: 257-260 https://doi.org/10.1111/j.1574-6968.2004.tb09655.x
  15. Schaad, N. W., Jones, J. B. and Chun, W. 2001. Plant pathogenic bacteria. 3rd ed. APS Press, Minnesota, USA
  16. Widmer, F., Seidler, R. J., Gillevet, P. M., Watrud, L. S. and Di Giovanni, G. D. 1998. A highly selective PCR protocol for detection 16S rRNA genes of the genus Pseudomonas (Sensu Stricto) in environmental samples. Appl. Environ. Microbiol. 64: 2545-2553
  17. Winding, A., Binnerup, S. J. and Pritchard, H. 2004. Non-target effects of bacterial biological control agents suppressing root pathogenic fungi. FEMS Microbiol. Ecol. 47: 129-141 https://doi.org/10.1016/S0168-6496(03)00261-7

Cited by

  1. Selection of Environmental Friendly Organic Agricultural Materials for Controlling Ginseng Gray Mold vol.23, pp.6, 2015, https://doi.org/10.7783/KJMCS.2015.23.6.473