Customer Behavior Based Customer Profiling Technique for Personalized Products Recommendation

개인화된 제품 추천을 위한 고객 행동 기반 고객 프로파일링 기법

  • 박유진 (연세대학교 원주캠퍼스 경영학과) ;
  • 정유진 (연세대학교 원주캠퍼스 경영학과) ;
  • 장근녕 (연세대학교 원주캠퍼스 경영학과)
  • Published : 2006.11.30

Abstract

In this paper, we propose a customer profiling technique based on customer behavior for personalized products recommendation in Internet shopping mall. The proposed technique defines customer profile model based on customer behavior Information such as click data, buying data, market basket data, and interest categories. We also implement CBCPT(customer behavior based customer profiling technique) and perform extensive experiments. The experimental results show that CBCPT has higher MAE, precision, recall, and F1 than the existing other customer profiling technique.

Keywords

References

  1. 김종우, 배세진, 이홍주, '협업 필터링 기반 개인화 추천에서의 평가자료의 희소 정도의 영향', 경영정보학연구, 제14권, 제2호(2004), pp.131-149
  2. 이수정, 이형동, 김형주, '사용자 경향에 기 반한 동적 추천 기법: 영화 추천 시스템을 중심으로', 정보과학회논문지:소프트웨어 및 응용, 제31권, 제2호(2004), pp.153-163
  3. Ansari, A., S. Essegaier, and R. Kohli, 'Internet Recommendation Systems,' Journal of Marketing Research, Vol.37, No.3(2000), pp.363-375 https://doi.org/10.1509/jmkr.37.3.363.18779
  4. Basu, C., H. Hirsh, and W. Cohen, 'Recommendation as classification: using social and content-based information in recommendation,' Proceedings of the 1998 workshop on recommender systems, (1998), pp.714-720
  5. Billsus, D. and M.J. Pazzani, 'Learning Collaborative Information Filters,' Proceedings of ICML, (1998), pp.46-53
  6. Changchien, S.W., C.F. Lee, and Y.J. Hus, 'On-line personalized sales promotion in electronic commerce,' Expert Systems with Application, Vol.27, No.1(2004), pp.35-52 https://doi.org/10.1016/j.eswa.2003.12.017
  7. Cheung, K.W., J.T. Kwok, M.H. Law, and K.C. Tsui, 'Mining customer product ratings for personalized marketing,' Decision Support Systems, Vol.35, No.2(2003), pp.231-243 https://doi.org/10.1016/S0167-9236(02)00108-2
  8. Cho, Y.B., Y.H. Cho, and S.H. Kim, 'Mining changes in customer buying behavior for collaborative recommendations,' Expert Systems with Applications, Vol.28, No.2 (2005), pp.359-369 https://doi.org/10.1016/j.eswa.2004.10.015
  9. Fan, W., M.D. Gordon, and P. Pathak, 'Effective profiling of consumer information retrieval needs: a unified framework and empirical comparison,' Decision Support Systems, Vol.40, No.2(2005), pp.213-233 https://doi.org/10.1016/j.dss.2004.02.003
  10. Goldberg, D., D. Nichols., B.M. Oki, and D. Terry, 'Using Collaborative Filtering to Weave an Information Tapestry,' Communications of the ACM, Vol.35, No.12(1992), pp.61-70
  11. Glodberg, K., T. Roeder., D. Gupta, and C. Perkins, 'Eigentaste: A Constant Time Collaborative Filtering Algorithm,' Information Retrieval Journal, Vol.4, No.2(2001), pp.133-151 https://doi.org/10.1023/A:1011419012209
  12. Good, N., J.B. Schafer., J.A. Konstan., A. Borchers., B. Sarwa., J. Herlocker, and J. Riedl, 'Combing collaborative filtering with personal agents for better recommendations,' Proceedings of the 16th National Conference on Artificial Intelligence, (1999), pp.439-446
  13. Hayes, C., P. Cunningham, and B. Smyth, 'A case-based reasoning view of automated collaborative filtering,' Proceedings of the 4th international conference on case-based reasoning, (2001), pp.243-248
  14. Herlocker, J.L., J.A. Konstan, L.G. Terveen, and J.T. Riedl, 'Evaluation Collaborative Filtering Recommender Systems,' ACM Transactions on Information Systems, Vol.22, No.1(2004), pp.5-53 https://doi.org/10.1145/963770.963772
  15. Joachims, T., D. Freitag, and T. Mitchell, 'Webwatcher: A tour guide for the world wide web,' 15th International Joint Conference on Artificial Intelligence, (1997), pp.770-777
  16. Konsta, J., B. Miller, D. Maltz., J. Herlocker., L. Gordon, and J. Riedl, 'GroupLens: Applying collaborative filtering to usenet news,' Communications of the ACM, Vol.40, No.3(1997), pp.77-87 https://doi.org/10.1145/245108.245126
  17. Krulwich, B. and C. Burkey, 'The Info- Finder agent:learning user interests through heuristic phrase extraction,' IEEE Expert, Vol.12, No.5(1997), pp.22-27
  18. Kwak, M. and D.S. Cho, 'Collaborative filtering with automatic rating for recommendation,' Proceedings of ISIE 2001 IEEE international symposium on industrial electronics, (2001), pp.625-628
  19. Lang, K., 'Newsweeder:Learning to filter netnews,' Proceedings of the 12th International Conference on Machine Learning, (1995), pp.331-339
  20. Lee, C.H., Y.H. Kim, and P.K. Rhee, 'Web personalization expert with combing collaborative filtering and association rule mining technique,' Expert Systems with Applications, Vol.21, No.3(2001), pp.131-137 https://doi.org/10.1016/S0957-4174(01)00034-3
  21. Lee, W.P., 'Applying domain knowledge and social information to product analysis and recommendations: an agent-based decision support system,' Expert Systems, Vol.21, No.3(2004), pp.138-148 https://doi.org/10.1111/j.1468-0394.2004.00270.x
  22. Lee, W.P. and T.H. Yang, 'Personalizing information appliances:a multi-agent framework for TV programme recommendations,' Expert Systems with Applications, Vol.25, No.3(2003), pp.331-341 https://doi.org/10.1016/S0957-4174(03)00074-5
  23. Leiberman, H., 'Letizia:An agent that assist web browsing,' Proceeding of the International Joint Conference on Artificial Intelligence, (1995), pp.924-929
  24. Li, Y., L. Lu, and L. Xuefeng, 'A hybrid collaborative filtering method for multiple- interests and multiple-content recommendation in E-Commerce,' Expert Systems with Applications, Vol.28, No.1(2005), pp.67-77 https://doi.org/10.1016/j.eswa.2004.08.013
  25. Liu, D.R., and Y.Y. Shih, 'Integrating AHP and data mining for product recommendation based on customer lifetime value,' Information & Management, Vol.42, No.3 (2005), pp. 387-400 https://doi.org/10.1016/j.im.2004.01.008
  26. Middleton, S.E., N.R. Shadbolt, and D.C. de Roure, 'Ontological User Profiling in Recommender Systems,' ACM Transactions on Information Systems, Vol.22, No.1(2004), pp.54-88 https://doi.org/10.1145/963770.963773
  27. Min, S.H. and I. Han, 'Detection of the customer time-variant pattern for improving recommender systems,' Expert Systems with Application, Vol.28, No.2(2005), pp.189-199 https://doi.org/10.1016/j.eswa.2004.10.001
  28. Montaner, M., B. Lopez, and J.L. De La Rosa, 'A Taxonomy of Recommender Agents on the Internet,' Artificial Intelligence Review, Vol.19, No.4(2003), pp.285-330 https://doi.org/10.1023/A:1022850703159
  29. Perugini, S., M.A. Goncalves, and E.A. Fox, 'Recommender Systems Research : A Connection-Centric Survey,' Journal of Intelligent Information Systems, Vol.23, No.2(2004), pp.107-143 https://doi.org/10.1023/B:JIIS.0000039532.05533.99
  30. Sarwar, B.M., J.A. Konstan., A. Borchers., J. Herlocker., B. Miller, and J. Riedl, 'Using Filtering Agents to Improve Prediction Quality in the Grouplens Research Collaborative Filtering System,' Proceedings of CSCW 98, (1998), pp.345-354
  31. Sarwar, B.M. G. Karypis., J. Konstan, and J. Riedl, 'Analysis of recommendation algorithms for E-commerce,' Proceedings of ACM E-commerce 2000 conference, (2000), pp.158-167
  32. Sarwar, B.M., G. Karypis., J.A. Konstan, and J. Riedl, 'Item-based collaborative filtering recommendation algorithm,' Proceedings of the 10th international world wide web conference, (2001), pp.285-295
  33. Shardanand, U. and P. Maes, 'Social information filtering: Algorithms for automating word of mouth,' ACM Conference on Computer Human Interaction, (1995), pp.210-217
  34. Weng, S.S. and M.J. Liu, 'Feature-based recommendations for one-to-one marketing,' Expert Systems with Applications, Vol.26, No.4(2004), pp.493-508 https://doi.org/10.1016/j.eswa.2003.10.008
  35. Yen, B.P.C. and R.C.W. Kong, 'Personalization of information access for electronic catalogs on the web,' Electronic Commerce Research and Applicaions, Vol.1, No.1(2002), pp.20-40 https://doi.org/10.1016/S1567-4223(02)00004-2