Thermal Conductivity and Adhesion Properties of Thermally Conductive Pressure-Sensitive Adhesives

  • Kim, Jin-Kon (National Creative Research Initiative Center for Block Copolymer Self-Assembly and Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Kim, Jong-Won (National Creative Research Initiative Center for Block Copolymer Self-Assembly and Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Kim, Myung-Im (National Creative Research Initiative Center for Block Copolymer Self-Assembly and Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Song, Min-Seok (National Creative Research Initiative Center for Block Copolymer Self-Assembly and Department of Chemical Engineering, Pohang University of Science and Technology)
  • Published : 2006.10.31

Abstract

The effects of particle content, size and shape on the thermal conductivity (k) and adhesion properties of thermally conductive, pressure-sensitive adhesives (PSAs) were investigated. The matrix resins were thermally crosslinkable, 2-ethylhexyl acrylic polyol and ultraviolet (UV)-curable, random copolymer consisting of acrylic oligomer and various acrylates. We found that k increased with increasing diameter and particle aspect ratio, and was further enhanced due to the reduction of the interfacial thermal barrier when the coupling agent, which increases the adhesion between particles and the matrix resin, was used. On the other hand, adhesion properties such as peel strength and tack of the thermally crosslinkable resin decreased sharply with increasing particle content. However, for UV curable resin, increased particle addition inhibited the decrease in adhesion properties.

Keywords

References

  1. H. Ishida and S. Rimdusit, Thermochimica Acta, 320, 177 (1998) https://doi.org/10.1016/S0040-6031(98)00463-8
  2. J. Bae, W. Kim, and S. Cho, J. Material Science, 35, 5907 (2000) https://doi.org/10.1023/A:1026741300020
  3. Y. Xu, D. D. L. Chung, and C. Mroz, Composites: Part A, 32, 1749 (2001) https://doi.org/10.1016/S1359-835X(01)00023-9
  4. P. Bujard, G.. Kuhnlein, S. Ino, and T. Shiobara, IEEE Transac. Compn. Packg. Manu. Tech: Part A, 17, 527 (1994) https://doi.org/10.1109/95.335037
  5. R. F. Hill and P. H. Supancic, J. Am. Ceram. Soc., 85, 851 (2002) https://doi.org/10.1111/j.1151-2916.2002.tb00183.x
  6. C. T. Murrary, R. L. Rudman, M. B. Sabade, and A. V. Pocius, MRS Bulletin, 28, 449 (2003) https://doi.org/10.1557/mrs2003.127
  7. Japan Patent, 2000-290615A (Tokai Rubber Co., Japan)
  8. Japan Patent 2005-97440A (Sumitio-3M Co., Japan)
  9. J. W. Bae, W. Kim, S. Hwang, Y. S. Choe, and S. H. Lee, Macromol. Res., 12, 78 (2004) https://doi.org/10.1007/BF03218998
  10. D. W. Kang and H. G. Yeo, Polymer(Korea), 29, 161 (2005)
  11. C. P. Wong and R. S. Bollampally, J. Appl. Polym. Sci., 74, 3396 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3
  12. C. P. Wong and R. S. Bollampally, IEEE Transac. Adv. Packg., 22, 54 (1999) https://doi.org/10.1109/6040.746543
  13. I. H. Tavman, Int. Comm. Heat Mass Transfer, 25, 723 (1998) https://doi.org/10.1016/S0735-1933(98)00059-1
  14. Y. Nagai and G. Lai, J. Ceram. Soc. of Japan, 105, 213 (1996)
  15. Y. P. Mamunya, V. V. Davydenko, P. Pissis, and E. V. Lebedev, Eur. Polym. J., 38, 1887 (2002) https://doi.org/10.1016/S0014-3057(02)00064-2
  16. D. Kumlut , . H. Tavman, and M. T. Coban, Composites Sci. Technol., 63, 113 (2003) https://doi.org/10.1016/S0266-3538(02)00194-X
  17. A. Boudenne, L. Ibos, M. Fois, J. C. Majeste, and E. Gehin, Composites: Part A, 36, 1545 (2005) https://doi.org/10.1016/j.compositesa.2005.02.005
  18. S. E. Gustafsson, Rev. Sci. Instrum., 62, 797 (1991) https://doi.org/10.1063/1.1142087
  19. J. K. Kim, W. H. Kim, and D. H. Lee, Polymer, 43, 5005 (2002) https://doi.org/10.1016/S0032-3861(02)00327-0