Browse > Article

Synthesis of Lactide from Oligomeric PLA: Effects of Temperature, Pressure, and Catalyst  

Yoo, Dong-Keun (Department of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University)
Kim, Duk-Joon (Department of Chemical Engineering, Polymer Technology Institute, Sungkyunkwan University)
Lee, Doo-Sung (Department of Polymer Engineering, Polymer Technology Institute, Sungkyunkwan University)
Publication Information
Macromolecular Research / v.14, no.5, 2006 , pp. 510-516 More about this Journal
Abstract
Lactide was produced from oligomeric PLA by back-biting reaction of the OH end groups. For optimization of the reaction conditions, the effects of temperature, pressure, PLA molecular weight, and catalyst type on the lactide synthesis were examined. The fraction of D,L-lactide decreased with increasing temperature. Among the various Sn-based catalysts, the D,L-lactide fraction was maximized when SnO was used. A higher yield with lower racemization was observed at lower pressure. The conversion of PLA was maximized at an oligomeric PLA molecular weight of ca. 1380. The yield of lactide increased but the fraction of D,L-lactide decreased with increasing molecular weight. The highest conversion with the lowest racemization degree was obtained at a catalyst concentration of 0.1 wt%. The lactide was more sensitive to racemization because of the entropic effect.
Keywords
poly(lactic acid); D,L-lactide; meso-lactide; catalysts; depolymerization; racemization; deprotonation;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 C. Bastioli, Macromol. Symp., 135, 193 (1998)   DOI
2 K.W. Kim and S. I. Woo, Macromol. Chem. Phys., 203, 2245 (2002)   DOI   ScienceOn
3 K. Yamane, et al., USP 6916939 (2005)
4 F. E. Kohn, J. W. A. Van Den Berg, V. D. Ridder, and J. Feijen, J. Appl. Polym. Sci., 29, 4265 (1984)   DOI
5 G.. I. Shim, J. H. Kim, S. H. Kim, and Y. H. Kim, Korea Polym. J., 5, 19 (1997)
6 H. R. Kricheldorf and A. Serra, Polym. Bull., 14, 497(1985)
7 D. R. Witzke, R. Narayan, and J. J. Kolstad, Macromolecules, 30, 7075 (1997)   DOI   ScienceOn
8 D. K. Yoo, D. S. Lee, and D. Kim, Macromol. Res., 13, 68 (2005)   DOI
9 M. Muller, et al., USP 5214159 (1993)
10 H. R. Kricheldorf and I. Kreiser-Saunders, Macromol. Chem., 191, 1057 (1990)   DOI
11 H. R. Kricheldorf and S. R. Lee, Polymer, 36, 2995 (1995)   DOI   ScienceOn
12 H. R. Kricheldorf, I. Kreiser-Saunders, and C. Boettcher, Polymer, 36, 1253 (1995)   DOI   ScienceOn
13 K. A. M. Thakur, R. T. Kean, and E. S. Hall, Anal. Chem., 69, 4303 (1997)   DOI   ScienceOn
14 P. Mainilvarlet, R. Rahm, and S. Gogolewski, Biomaterials, 18, 257 (1997)   DOI   ScienceOn
15 H. R. Kricheldorf and M. Sumbel, Eur. Polym. J., 25, 585 (1989)   DOI   ScienceOn
16 P. R. Gruber, et al., USP 2574073 (1993)
17 H. P. Benecke, et al., USP5332839 (1994)
18 W. Hoogsteen, A. R. Postema, A. J. Pennings, and G. T. Brinke, Macromolecules, 23, 634 (1990)   DOI
19 S. I. Moon, C. H. Lee, M. Miyamoto, and Y. Kimura, J. Polym. Sci.: Part A; Polym. Chem., 38, 1673 (2000)   DOI   ScienceOn
20 A. J. Nijenhuis, D. W. Grijpma, and A. J. Pennings, Macromolecules, 25, 6419 (1992)   DOI
21 H. Tsuji, I. Fukui, H. Daimon, and K. Fujie, Polym. Degrad. Stabil., 81, 501 (2003)   DOI   ScienceOn
22 J. Zhang, Z. Gan, Z. Zhong, and X. Jing, Polym. Int., 45, 60 (1998)   DOI   ScienceOn
23 K. A. M. Thakur, R. T. Kean, E. S. Hall, J. J. Kolstad, T. A. Lidgren, M. A. Doscotch, J. I. Siepmann, and E. J. Munson, Macromolecules, 30, 2422 (1997)   DOI   ScienceOn
24 H. R. Kricheldorf and D.-O. Damaru, Macromol. Chem., 198, 1753 (1997)   DOI   ScienceOn