전통산업과 첨단산업의 창의적 융합을 위한 RP&M 기술 활용 - RP&M 기술의 생체 및 나노 기술에 대한 적용

Application of RP&M for Bio and Nano Technology

  • 양동열 (한국과학기술원 기계공학과) ;
  • 김효찬 (한국과학기술원 대학원 기계공학과) ;
  • 박상후 (한국과학기술원 대학원 기계공학과) ;
  • 임태우 (한국과학기술원 대학원 기계공학과) ;
  • 박석희 (한국과학기술원 대학원 기계공학과)
  • 발행 : 2006.11.01

초록

키워드

참고문헌

  1. Jacobs, P.F., 'Stereolithography and other RP&M Technologies from Rapid Prototyping to Rapid Tooling,' ASME Press, 1996
  2. Yang, D.Y., Kim, H.C. and Park, S.H., 'Principle and Recent Trend of Rapid Prototyping Technology,' Transactions of Materials Processing, Vol. 14, No.3, pp. 187-199, 2005 https://doi.org/10.5228/KSPP.2005.14.3.187
  3. Wohler, T., 'Wohlers Report 2006, ' Wohler's Associates Inc., 2006
  4. Griffith, L.G and Naughton, G, 'Tissue Engineering-Current Challenges and Expanding Opportunities,' SCIENCE, Vol. 295, No.8, pp. 1009-1016, 2002 https://doi.org/10.1126/science.1069210
  5. Leong, K.F., Cheah, C.M. and Chua, C.K., 'Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs,' Biomaterials, Vol. 24, pp.2363-2378, 2003 https://doi.org/10.1016/S0142-9612(03)00030-9
  6. Vozzi, G, Flaim, Co, Ahluwalia, A. and Bhatia, S., 'Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition,' Biomaterials, Vol. 24, pp. 2533-2540, 2003 https://doi.org/10.1016/S0142-9612(03)00052-8
  7. Pfister, A., Landers, R., Laib, A., Hubner, U. and Schmelzeisen, R., 'Biofunctional rapid prototyping for tissue engineering applications: 3D bioplotting versus 3D pringting,' Journal of Polymer Science, Vol. 42, pp. 624-638, 2004 https://doi.org/10.1002/pola.10807
  8. Ikuta, K., Yamada, A. and Niikura, F., 'Real three-dimensional microfabrication for biodegradable polymers, IEEE EMBS, Vol. 4, pp. 2679-2682, 2004 https://doi.org/10.1109/IEMBS.2004.1403769
  9. Ciardelli, G., Chiono, V., Cristallini, C., Barbani, N., Ahluwalia, A., Vozzi, G, Previti, A., Tantussi, G and Giusti, P., 'Innovative tissue engineering structures through advanced manufacturing technologies,' Journal of Material Science, No. 15, pp. 305-310, 2004 https://doi.org/10.1023/B:JMSM.0000021092.03087.d4
  10. Kumar, A. and Whitesides, G.M., 'Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol 'ink' followed by chemical etching,' Appl. Phys. Lett., Vol. 63, pp. 2002-2004, 1993 https://doi.org/10.1063/1.110628
  11. Zhao, X.-M., Xia, Y. and Whitesides, G.M., 'Fabrication of three-dimensional micro-structures: Microtransfer molding,' Adv. Mater., Vol. 8, pp. 837-840, 1996 https://doi.org/10.1002/adma.19960081016
  12. Kim, E., Xia, Y. and Whitesides, GM., 'Polymer microstructures formed by moulding in capillaries,' Nature, Vol. 376, pp. 581-584,1995 https://doi.org/10.1038/376581a0
  13. Chou, S.Y., Keimel, C. and Gu, J., 'Ultrafast and direct imprint of nanstructures in silicon,' Nature, Vol. 417, No. 20, pp. 835-837, 2002 https://doi.org/10.1038/nature00792
  14. Serbin, J., Egbert, A., Ostendorf, A. and Chichkov, B.N.,'Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics, Optics letters, Vol.28, No.5, pp.301-303, 2003 https://doi.org/10.1364/OL.28.000301
  15. Kawata, S., Sun, H.B., Tanaka, T. and Takada, K., 'Finer features for functional microdevices,' Nature, Vol.412, No.16, pp.697-698, 2001 https://doi.org/10.1038/35089130
  16. Park, S.H., Lim, T.W, Yang, D.Y., Yi, S.W and Kong, H.J., 'Direct Fabrication of Micro-Patterns and Three-dimensional Structures using Nano Replication Printing (nRP) Process,' Sensors and Materials, Vol.17, No.2, pp.65-75, 2005
  17. Zong, X., Li, S., Chen, E., Garlick, B., Kim, K.S., Fang, D., Chiu, J., Zimmerman, T., Brathwaite, C., Hsiao, S. B. and Chu, B., 'Prevention of PostsurgeryInduced Abdominal Adhesions by Electrospun Bioabsorbable Nanofibrous Poly(lactide-coglycolide)-Based Membranes,'Annals of Surgery, Vol.240, No.5, pp.910-915, 2004 https://doi.org/10.1097/01.sla.0000143302.48223.7e
  18. Lam, C.X.F., Mo, X.M., Teoh, S.H. and Hutmacher, D.W, 'Scaffold development using 3D printing with a starch-based polymer,' Materials Science and Engineering, Vol. 20, pp. 49-56, 2002 https://doi.org/10.1016/S0928-4931(02)00012-7
  19. Engelmayr, G.C., Papworth, G.D., Watkinsb, S.C., Mayer J.E. and Sacks, M.S., 'Guidance of engineered tissue collagen orientation by large-scale scaffold microstructures,' Journal of Biomechanics, Vol. 39, pp. 1819-1831, 2006 https://doi.org/10.1016/j.jbiomech.2005.05.020
  20. Fouassier, J.P. and Rabek, IF., 'Radiation curing in polymer science and technology -volume III, Polymerization Mechanisms,' Elsvier, London, 1993
  21. Park, S.H., Lim, T.W., Lee, S.H., Yang, D.Y., Kong, H.J. and Lee, K.S., 'Fabrication of Microstructure using Double Contour Scanning (DCS) Method by Two-photon Polymerization,' Polymer(Korea), Vol. 29, No.2, pp. 146-150, 2005
  22. Park, S.H., Lee, S.H., Yang, D.Y., Kong, H,J. and Lee, K.S., 'Subregional slicing method to increase 3D nanofabrication efficiency in two-photon polymerization,' Appl. Phys. Lett., Vol. 87, pp. 154108(1)-154108(3), 2005 https://doi.org/10.1063/1.2103393
  23. Kato, J., Takeyasu, N., Adachi, Y., Sun, H.B. and Kawata, S., 'Multiple-spot parallel processing for laser micronanofabrication,' Appl. Phys. Lett., Vol. 86, pp. 044102(1)-044102(3), 2005 https://doi.org/10.1063/1.1855404
  24. Duan, X.M., Sun, H.B., Kaneko, K. and Kawata, S., 'Two-photon polymerization of metal ions doped acrylate monomers and oligomers for threedimensional structure fabrication,' Thin Solid Film, Vol. 453-454, pp. 518-521, 2004 https://doi.org/10.1016/j.tsf.2003.11.126
  25. Sun, H.B., Takada, K. and Kawata, S., 'Elastic force analysis of functional polymer sub micron oscillators,' Appl. Phys. Lett., Vol. 79, No. 19, pp. 3173-3175, 2001 https://doi.org/10.1063/1.1418024
  26. Park, S.H., Lim, T.W., Yang, D.Y., Jeong, l.H., Kim, K.D.,Lee, K.S. and Kong, H.J., 'Effective fabrication of three-dimensional nano/microstructures in a single step using multilayered stamp,' Appl. Phys. Lett., accepted, 2006 https://doi.org/10.1063/1.2204448