Cloning and Overexpression of 4-${\alpha}$-Glucanotransferase from Thermus brockianus (TBGT) in E. coli

  • Bang, Bo-Young (Department of Food Science & Biotechnology, Graduate School of Biotechnology and Institute of Life Science & Resources, KyungHee University) ;
  • Kim, Han-Jo (Department of Food Science & Biotechnology, Graduate School of Biotechnology and Institute of Life Science & Resources, KyungHee University) ;
  • Kim, Hae-Yeong (Department of Food Science & Biotechnology, Graduate School of Biotechnology and Institute of Life Science & Resources, KyungHee University) ;
  • Baik, Moo-Yeol (Department of Food Science & Biotechnology, Graduate School of Biotechnology and Institute of Life Science & Resources, KyungHee University) ;
  • Ahn, Soon-Cheol (Department of Microbiology and Immunology, College of Medicine, Pusan National University) ;
  • Kim, Chung-Ho (Department of Food and Nutrition, Seowon University) ;
  • Park, Cheon-Seok (Department of Food Science & Biotechnology, Graduate School of Biotechnology and Institute of Life Science & Resources, KyungHee University)
  • Published : 2006.11.30

Abstract

A gene corresponding to 4-${\alpha}$-glucanotransferase (${\alpha}GTase$) was cloned from the thermophilic bacterium Thermus brockianus. The nucleotide sequence analysis showed that the ${\alpha}GTase$ gene is composed of 1,503 nucleotides and encodes a polypeptide that is 500 amino acids long with a calculated molecular mass of 57,221 Da. The deduced amino acid sequences of Thermus brockianus ${\alpha}GTase$ (TBGT) exhibited a high level of similarity to the amino acid sequence of ${\alpha}GTase$ of Thermus thermophilus (86%), but low level of homology to that of E. coli (26%). The TBGT gene was overexpressed in E. coli BL21, and the corresponding recombinant enzyme was efficiently purified by Ni-NTA affinity chromatography. The enzymatic characteristics revealed that optimal pH and temperature were pH 6 and $70^{\circ}C$, respectively. Most interestingly, TBGT reacted with small oligosaccharides, especially maltotriose, to form various maltooligosaccharides by using its disproportionation activity.

Keywords

References

  1. Ahn S. H., S. H. Jeong, J. M. Kim, Y. O. Kim, S. J. Lee, and I. S. Kong. 2005. Molecular cloning and characterization of alkaliphilic phospholipase B (VFP58) from Vibrio fluivialis. J. Microbiol. Biotechnol. 15: 354-361
  2. Bhuiyan, S. H., M. Kitaoka, and K. Hayashi. 2003. A cycloamylose-forming hyperthermostable 4-${\alpha}$-glucanotransferase of Aquifex aeolicus expressed in Escherichia coli. J. Mol. Catal. B Enzym. 22: 45-53 https://doi.org/10.1016/S1381-1177(03)00005-5
  3. Choi, J. J., J. W. Park, H. Shim, S. Lee, M. Kwon, J.-S. Yang, H. Hwang, and S.-T. Kwon. 2006. Cloning, expression, and characterization of a hyperalkaline phosphatase from the thermophilic bacterium Thermus sp. T351. J. Microbiol. Biotechnol. 16: 272-279
  4. Gessler, K., I. Uson, T. Takaha, N. Krauss, S. M. Smith, S. Okada, G. M. Sheldrick, and W. Saenger. 1999. V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose). Proc. Natl. Acad. Sci. USA 96: 4246-4251
  5. Jeon, B. S., H. Taguchi, H. Sakai, T. Ohshima, T. Wakagi, and H. Matsuzawa. 1997. 4-${\alpha}$-Glucanotransferase from the hyperthermophilic archaeon Thermococcus litoralis - enzyme purification and characterization, and gene cloning, sequencing and expression in Escherichia coli. Eur. J. Biochem. 248: 171-178 https://doi.org/10.1111/j.1432-1033.1997.00171.x
  6. Kang, S. K., K. K. Cho, J. K. Ahn, S. H. Kang, K. H. Han, H. G. Lee, and Y. J. Choi. 2004. Cloning and expression of thermostable ${\beta}$-glycosidase gene from Thermus filiformis Wai33 A1 in Escherichia coli and enzyme characterization. J. Microbiol. Biotechnol. 14: 584-592
  7. Kaper, T., B. Talik, T. J. Ettema, H. Bos, M. J. van der Maarel, and L. Dijkhuizen. 2005. Amylomaltase of Pyrobaculum aerophilum IM2 produces thermoreversible starch gels. Appl. Environ. Microbiol. 71: 5098-5106 https://doi.org/10.1128/AEM.71.9.5098-5106.2005
  8. Kaper, T., M. J. van der Maarel, G. J. Euverink, and L. Dijkhuizen. 2004. Exploring and exploiting starch-modifying amylomaltases from thermophiles. Biochem. Soc. Trans. 32: 279-282 https://doi.org/10.1042/BST0320279
  9. Kitamura, S., K. Nakatani, T. Takaha, and S. Okada. 1999. Complex formation of large-ring cyclodextrins with iodine in aqueous solution as revealed by isothermal titration calorimetry. Macromol. Rapid Commun. 20: 612-615 https://doi.org/10.1002/(SICI)1521-3927(19991201)20:12<612::AID-MARC612>3.0.CO;2-E
  10. Liebl, W., R. Feil, J. Gabelsberger, J. Kellermann, and K. H. Schleifer. 1992. Purification and characterization of a novel thermostable 4-${\alpha}$-glucanotransferase of Thermotoga maritima cloned in Escherichia coli. Eur. J. Biochem. 207: 81-88 https://doi.org/10.1111/j.1432-1033.1992.tb17023.x
  11. MacGregor, E. A., S. Janecek, and B. Svensson. 2001. Relationship of sequence and structure to specificity in the ${\alpha}$-amylase family of enzymes. Biochim. Biophys. Acta 1546: 1-20 https://doi.org/10.1016/S0167-4838(00)00302-2
  12. Machida, S., S. Ogawa, S. Xiaohua, T. Takaha, K. Fujii, and K. Hayashi. 2000. Cycloamylose as an efficient artificial chaperone for protein refolding. FEBS Lett. 486: 131-135 https://doi.org/10.1016/S0014-5793(00)02258-4
  13. Miwa, I., S. Okudo, K. Maeda, and G. Okuda. 1972. Mutarotase effect on colorimetric determination of blood glucose with ${\beta}-_D$-glucose oxidase. Clin. Chim. Acta 37: 537-540
  14. Palmer, T. N., B. E. Ryman, and W. J. Whelan. 1976. The action pattern of amylomaltase from Escherichia coli. Eur. J. Biochem. 69: 105-115 https://doi.org/10.1111/j.1432-1033.1976.tb10863.x
  15. Pazur, J. H. and S. Okada. 1968. The isolation and mode of action of a bacterial glucanosyltransferase. J. Biol. Chem. 243: 4732-4738
  16. Roujeinikova, A., C. Raasch, S. Sedelnikova, W. Liebl, and D. W. Rice. 2002. Crystal structure of Thermotoga maritima 4-${\alpha}$-glucanotransferase and its acarbose complex: Implications for substrate specificity and catalysis. J. Mol. Biol. 321: 149-162 https://doi.org/10.1016/S0022-2836(02)00570-3
  17. Tachibana, Y., T. Takaha, S. Fujiwara, M. Takagi, and T. Imanaka. 2000. Acceptor specificity of 4-${\alpha}$-glucanotransferase from Pyrococcus kodakaraensis KOD1, and synthesis of cycloamylose. J. Biosci. Bioeng. 90: 406-409 https://doi.org/10.1016/S1389-1723(01)80009-8
  18. Takaha, T. and S. M. Smith. 1999. The functions of 4-${\alpha}$-glucanotransferases and their use for the production of cyclic glucans. Biotech. Gen. Eng. Rev. 16: 257-280 https://doi.org/10.1080/02648725.1999.10647978
  19. Takaha, T., M. Yanase, S. Okada, and S. M. Smith. 1993. Disproportionating enzyme (4-${\alpha}$-glucanotransferase; EC 2.4.1.25) of potato. Purification, molecular cloning, and potential role in starch metabolism. J. Biol. Chem. 268: 1391-1396
  20. Terada, Y., K. Fujii, T. Takaha, and S. Okada. 1999. Thermus aquaticus ATCC 33923 amylomaltase gene cloning and expression and enzyme characterization: Production of cycloamylose. Appl. Environ. Microbiol. 65: 910-915
  21. Thompson, V. S., K. D. Schaller, and W. A. Apel. 2003. Purification and characterization of a novel thermo-alkali-stable catalase from Thermus brockianus. Biotechnol. Prog. 19: 1292-1299 https://doi.org/10.1021/bp034040t
  22. Walker, G. J. 1966. Metabolism of the reserve polysaccharide of Streptococcus mitis. Biochem. J. 101: 861-872 https://doi.org/10.1042/bj1010861