Browse > Article

Cloning and Overexpression of 4-${\alpha}$-Glucanotransferase from Thermus brockianus (TBGT) in E. coli  

Bang, Bo-Young (Department of Food Science & Biotechnology, Graduate School of Biotechnology and Institute of Life Science & Resources, KyungHee University)
Kim, Han-Jo (Department of Food Science & Biotechnology, Graduate School of Biotechnology and Institute of Life Science & Resources, KyungHee University)
Kim, Hae-Yeong (Department of Food Science & Biotechnology, Graduate School of Biotechnology and Institute of Life Science & Resources, KyungHee University)
Baik, Moo-Yeol (Department of Food Science & Biotechnology, Graduate School of Biotechnology and Institute of Life Science & Resources, KyungHee University)
Ahn, Soon-Cheol (Department of Microbiology and Immunology, College of Medicine, Pusan National University)
Kim, Chung-Ho (Department of Food and Nutrition, Seowon University)
Park, Cheon-Seok (Department of Food Science & Biotechnology, Graduate School of Biotechnology and Institute of Life Science & Resources, KyungHee University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.11, 2006 , pp. 1809-1813 More about this Journal
Abstract
A gene corresponding to 4-${\alpha}$-glucanotransferase (${\alpha}GTase$) was cloned from the thermophilic bacterium Thermus brockianus. The nucleotide sequence analysis showed that the ${\alpha}GTase$ gene is composed of 1,503 nucleotides and encodes a polypeptide that is 500 amino acids long with a calculated molecular mass of 57,221 Da. The deduced amino acid sequences of Thermus brockianus ${\alpha}GTase$ (TBGT) exhibited a high level of similarity to the amino acid sequence of ${\alpha}GTase$ of Thermus thermophilus (86%), but low level of homology to that of E. coli (26%). The TBGT gene was overexpressed in E. coli BL21, and the corresponding recombinant enzyme was efficiently purified by Ni-NTA affinity chromatography. The enzymatic characteristics revealed that optimal pH and temperature were pH 6 and $70^{\circ}C$, respectively. Most interestingly, TBGT reacted with small oligosaccharides, especially maltotriose, to form various maltooligosaccharides by using its disproportionation activity.
Keywords
Amylomaltase; disproportionation; 4-${\alpha}$-glucanotransferase; Thermus brockianus; transglycosylation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Kaper, T., B. Talik, T. J. Ettema, H. Bos, M. J. van der Maarel, and L. Dijkhuizen. 2005. Amylomaltase of Pyrobaculum aerophilum IM2 produces thermoreversible starch gels. Appl. Environ. Microbiol. 71: 5098-5106   DOI   ScienceOn
2 Kaper, T., M. J. van der Maarel, G. J. Euverink, and L. Dijkhuizen. 2004. Exploring and exploiting starch-modifying amylomaltases from thermophiles. Biochem. Soc. Trans. 32: 279-282   DOI
3 Liebl, W., R. Feil, J. Gabelsberger, J. Kellermann, and K. H. Schleifer. 1992. Purification and characterization of a novel thermostable 4-${\alpha}$-glucanotransferase of Thermotoga maritima cloned in Escherichia coli. Eur. J. Biochem. 207: 81-88   DOI   ScienceOn
4 Miwa, I., S. Okudo, K. Maeda, and G. Okuda. 1972. Mutarotase effect on colorimetric determination of blood glucose with ${\beta}-_D$-glucose oxidase. Clin. Chim. Acta 37: 537-540
5 Pazur, J. H. and S. Okada. 1968. The isolation and mode of action of a bacterial glucanosyltransferase. J. Biol. Chem. 243: 4732-4738
6 Takaha, T. and S. M. Smith. 1999. The functions of 4-${\alpha}$-glucanotransferases and their use for the production of cyclic glucans. Biotech. Gen. Eng. Rev. 16: 257-280   DOI   ScienceOn
7 Takaha, T., M. Yanase, S. Okada, and S. M. Smith. 1993. Disproportionating enzyme (4-${\alpha}$-glucanotransferase; EC 2.4.1.25) of potato. Purification, molecular cloning, and potential role in starch metabolism. J. Biol. Chem. 268: 1391-1396
8 Terada, Y., K. Fujii, T. Takaha, and S. Okada. 1999. Thermus aquaticus ATCC 33923 amylomaltase gene cloning and expression and enzyme characterization: Production of cycloamylose. Appl. Environ. Microbiol. 65: 910-915
9 Palmer, T. N., B. E. Ryman, and W. J. Whelan. 1976. The action pattern of amylomaltase from Escherichia coli. Eur. J. Biochem. 69: 105-115   DOI   ScienceOn
10 Kitamura, S., K. Nakatani, T. Takaha, and S. Okada. 1999. Complex formation of large-ring cyclodextrins with iodine in aqueous solution as revealed by isothermal titration calorimetry. Macromol. Rapid Commun. 20: 612-615   DOI   ScienceOn
11 Walker, G. J. 1966. Metabolism of the reserve polysaccharide of Streptococcus mitis. Biochem. J. 101: 861-872   DOI
12 Choi, J. J., J. W. Park, H. Shim, S. Lee, M. Kwon, J.-S. Yang, H. Hwang, and S.-T. Kwon. 2006. Cloning, expression, and characterization of a hyperalkaline phosphatase from the thermophilic bacterium Thermus sp. T351. J. Microbiol. Biotechnol. 16: 272-279   과학기술학회마을
13 Roujeinikova, A., C. Raasch, S. Sedelnikova, W. Liebl, and D. W. Rice. 2002. Crystal structure of Thermotoga maritima 4-${\alpha}$-glucanotransferase and its acarbose complex: Implications for substrate specificity and catalysis. J. Mol. Biol. 321: 149-162   DOI   ScienceOn
14 Jeon, B. S., H. Taguchi, H. Sakai, T. Ohshima, T. Wakagi, and H. Matsuzawa. 1997. 4-${\alpha}$-Glucanotransferase from the hyperthermophilic archaeon Thermococcus litoralis - enzyme purification and characterization, and gene cloning, sequencing and expression in Escherichia coli. Eur. J. Biochem. 248: 171-178   DOI   ScienceOn
15 Gessler, K., I. Uson, T. Takaha, N. Krauss, S. M. Smith, S. Okada, G. M. Sheldrick, and W. Saenger. 1999. V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose). Proc. Natl. Acad. Sci. USA 96: 4246-4251
16 Ahn S. H., S. H. Jeong, J. M. Kim, Y. O. Kim, S. J. Lee, and I. S. Kong. 2005. Molecular cloning and characterization of alkaliphilic phospholipase B (VFP58) from Vibrio fluivialis. J. Microbiol. Biotechnol. 15: 354-361   과학기술학회마을
17 Machida, S., S. Ogawa, S. Xiaohua, T. Takaha, K. Fujii, and K. Hayashi. 2000. Cycloamylose as an efficient artificial chaperone for protein refolding. FEBS Lett. 486: 131-135   DOI   ScienceOn
18 Thompson, V. S., K. D. Schaller, and W. A. Apel. 2003. Purification and characterization of a novel thermo-alkali-stable catalase from Thermus brockianus. Biotechnol. Prog. 19: 1292-1299   DOI   ScienceOn
19 Kang, S. K., K. K. Cho, J. K. Ahn, S. H. Kang, K. H. Han, H. G. Lee, and Y. J. Choi. 2004. Cloning and expression of thermostable ${\beta}$-glycosidase gene from Thermus filiformis Wai33 A1 in Escherichia coli and enzyme characterization. J. Microbiol. Biotechnol. 14: 584-592   과학기술학회마을
20 Tachibana, Y., T. Takaha, S. Fujiwara, M. Takagi, and T. Imanaka. 2000. Acceptor specificity of 4-${\alpha}$-glucanotransferase from Pyrococcus kodakaraensis KOD1, and synthesis of cycloamylose. J. Biosci. Bioeng. 90: 406-409   DOI
21 Bhuiyan, S. H., M. Kitaoka, and K. Hayashi. 2003. A cycloamylose-forming hyperthermostable 4-${\alpha}$-glucanotransferase of Aquifex aeolicus expressed in Escherichia coli. J. Mol. Catal. B Enzym. 22: 45-53   DOI   ScienceOn
22 MacGregor, E. A., S. Janecek, and B. Svensson. 2001. Relationship of sequence and structure to specificity in the ${\alpha}$-amylase family of enzymes. Biochim. Biophys. Acta 1546: 1-20   DOI   ScienceOn