Characterization of an Extracellular Xylanase in Paenibacillus sp. HY-8 Isolated from an Herbivorous Longicorn Beetle

  • Heo, Sun-Yeon (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kwak, Jang-Yul (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Oh, Hyun-Woo (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Doo-Sang (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Bae, Kyung-Sook (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Shin, Dong-Ha (Insect Biotech Co. Ltd.) ;
  • Park, Ho-Yong (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2006.11.30

Abstract

Paenibacillus sp. HY-8 isolated from the digestive tracts of the longicorn beetle, Moechotypa diphysis, produced an extracellular endoxylanase with a molecular weight of 20 kDa estimated by SDS-PAGE. The xylanase was purified to near electrophoretic homogeneity from the culture supernatant after ammonium sulfate precipitation, gel filtration, and ionexchange chromatography. The purified xylanase exhibited the highest activities at pH 6.0 and $50^{\circ}C$. The $K_m\;and\;V_{max}$ values were 7.2 mg/ml and 16.3 U/mg, respectively, for birchwood xylan as the substrate. Nucleotide sequence of the PCR-cloned gene was determined to have the open reading frame encoding a polypeptide of 212 amino acids. The N-terminal amino acid sequence and the nucleotide sequence analyses predicted that the precursor xylanase contained a signal peptide composed of 28 amino acids and a catalytically active 19.9-kDa peptide fragment. The deduced amino acid sequence shared extensive similarity with those of the glycoside hydrolase family 11 of xylanases from other bacteria. The predicted amino acid sequence contained two glutamate residues, previously identified as essential and conserved for active sites in other xylanases of the glycoside hydrolase family 11.

Keywords

References

  1. Bae, S. H. and Y. J. Choi. 1991. Purification and characterization of an extracellular xylanase of Bacillus stearothermophilus. Kor. J. Appl. Microbiol. Biotechnol. 19: 592-597
  2. Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338 https://doi.org/10.1007/s002530100704
  3. Biely, P., Z. Kratky, and M. Vrsanska. 1981. Substrate-binding site of endo-1,4-beta-xylanase of the yeast Cryptococcus albidus. Eur. J. Biochem. 119: 559-564 https://doi.org/10.1111/j.1432-1033.1981.tb05644.x
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Brennan, Y., W. N. Callen, L. Christoffersen, P. Dupree, F. Goubet, S. Healey, M. Hernandez, M. Keller, K. Li, N. Palackal, A. Sittenfeld, G. Tamayo, S. Wells, G. P. Hazlewood, E. J. Mathur, J. M. Short, D. E. Robertson, and B. A. Steer. 2004. Unusual microbial xylanases from insect guts. Appl. Environ. Microbiol. 70: 3609-3617 https://doi.org/10.1128/AEM.70.6.3609-3617.2004
  6. Brune, A., E. Miambi, and J. A. Breznak. 1995. Roles of oxygen and the intestinal microflora in the metabolism of lignin-derived phenylpropanoids and other monoaromatic compounds by termites. Appl. Environ. Microbiol. 61: 2688-2695
  7. Cho, S. G. and Y. J. C. 1995. Nucleotide sequence analysis of an endo-xylanase gene (xynA) from Bacillus stearothermophilus. J. Microbiol. Biotechnol. 5: 117-124
  8. Clarke, A. J. 1987. Essential tryptophan residues in the function of cellulase from Schizophyllum commune. Biochim. Biophys. Acta 912: 424-431 https://doi.org/10.1016/0167-4838(87)90048-3
  9. Coughlan, M. P. and G. P. Hazlewood. 1993. Beta-1,4-$_D$-xylan-degrading enzyme systems: Biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17(Pt 3): 259-289
  10. Cruden, D. L. and A. J. Markovetz. 1984. Microbial aspects of the cockroach hindgut. Arch. Microbiol. 138: 131-139 https://doi.org/10.1007/BF00413013
  11. Ghose, T. K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59: 257-268 https://doi.org/10.1351/pac198759020257
  12. Gilbert, H. J. and G. P. Hazlewood. 1993. Bacterial celluloses and xylanases. J. Gen. Microbiol. 139: 187-194 https://doi.org/10.1099/00221287-139-2-187
  13. Gilkes, N. R., B. Henrissat, D. G. Kilburn, R. C. Miller Jr., and R. A. Warren. 1991. Domains in microbial beta-1,4-glycanases: Sequence conservation, function, and enzyme families. Microbiol. Rev. 55: 303-315
  14. Heo, S., H. W. Oh, D. S. Park, K. S. Bae, H. Y. Park, and J. Kwak. 2006. Polyphasic assignment of highly xylanolytic bacteria isolated from a longicorn beetle. (In preparation)
  15. Heo, S. Y., J. K. Kim, Y. M. Kim, and S. W. Nam. 2004. Xylan hydrolysis by treatment with endoxylanase and ${\beta}$-xylosidase expressed in yeast. J. Microbiol. Biotechnol. 14: 171-177
  16. Kim, B. G., B. R. Jung, J. G. Jung, H. G. Hur, and J. H. Ahn. 2004. Purification and characterization of ${\beta}$-xylosidase from Trichoderma strain SY. J. Microbiol. Biotechnol. 14: 643-645
  17. Kim, K. J., K. N. Kim, and Y. J. Choi. 2004. Characterization of the arfA gene from Bacillus stearothermophilus No. 236 and its protein product, ${\alpha}-_L$-arabinofuranosidase. J. Microbiol. Biotechnol. 14: 474-482
  18. Ko, E. P., H. Akatsuka, H. Moriyama, A. Shinmyo, Y. Hata, Y. Katsube, I. Urabe, and H. Okada. 1992. Site-directed mutagenesis at aspartate and glutamate residues of xylanase from Bacillus pumilus. Biochem. J . 288: 117-121 https://doi.org/10.1042/bj2880117
  19. Kubata, K. B., T. Suzuki, H. Horitsu, K. Kawai, and K. Takamizawa. 1992. Xylanase I of Aeromonas caviae ME-1 isolated from the intestine of a herbivorous insect (Samia cynthia pryeri). Biosci. Biotechnol. Biochem. 56: 1463-1464 https://doi.org/10.1271/bbb.56.1463
  20. Kulkarni, N., A. Shendye, and M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456 https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
  21. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  22. Lee, C. C., M. Smith, R. E. Kibblewhite-Accinelli, T. G. Williams, K. Wagschal, G. H. Robertson, and D. W. Wong. 2006. Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Curr. Microbiol. 52: 112-116 https://doi.org/10.1007/s00284-005-4583-9
  23. Lee, Y. E. and P. O. Lim. 2004. Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG-22. J. Microbiol. Biotechnol. 14: 1014-1021
  24. Li, H., D. Faury, and R. Morosoli. 2006. Impact of amino acid changes in the signal peptide on the secretion of the Tat-dependent xylanase C from Streptomyces lividans. FEMS Microbiol. Lett. 255: 268-274 https://doi.org/10.1111/j.1574-6968.2005.00081.x
  25. Liab, K., P. Azadi, R. Collins, J. Tolan, J. S. Kim, and K. L. Eriksson. 2000. Relationships between activities of xylanases and xylan structures. Enzyme Microb. Technol. 27: 89-94 https://doi.org/10.1016/S0141-0229(00)00190-3
  26. Martinez, M. A., O. D. Delgado, J. D. Breccia, M. D. Baigori, and F. Sineriz. 2002. Revision of the taxonomic position of the xylanolytic Bacillus sp. MIR32 reidentified as Bacillus halodurans and plasmid-mediated transformation of B. halodurans. Extremophiles 6: 391-395 https://doi.org/10.1007/s00792-002-0269-4
  27. Matoub, M. and C. Rouland. 1995. Purification and properties of the xylanases from the termite Macrotermes bellicosus and its symbiotic fungus Termitomyces sp. Comp. Biol. 112: 629-635
  28. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  29. Nascimento, R. P., R. R. R. Coelho, S. Marques, L. Alves, F. M. Girio, E. P. S. Bon, and M. T. Amaral-Collaco. 2002. Production and partial characterization of xylanase from Streptomyces sp. strain AMT-3 isolated from Brazilian cerrado soil. Enzyme Microb. Technol. 31: 549-555 https://doi.org/10.1016/S0141-0229(02)00150-3
  30. Nath, D. and M. Rao. 1998. Structural and functional role of tryptophan in xylanase from an extremophilic Bacillus: Assessment of the active site. Biochem. Biophys. Res. Commun. 249: 207-212 https://doi.org/10.1006/bbrc.1998.9107
  31. Panbangred, W., A. Shinmyo, S. Kinoshita, and H. Okada. 1983. Purification and properties of endoxylanase produced by Bacillus pumilus. Agric. Biol. Chem. 47: 957-963 https://doi.org/10.1271/bbb1961.47.957
  32. Pell, G., E. J. Taylor, T. M. Gloster, J. P. Turkenburg, C. M. Fontes, L. M. Ferreira, T. Nagy, S. J. Clark, G. J. Davies, and H. J. Gilbert. 2004. The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J. Biol. Chem. 279: 9597-9605 https://doi.org/10.1074/jbc.M312278200
  33. Rivas, R., P. F. Mateos, E. Martinez-Molina, and E. Velazquez. 2005. Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera. Int. J. Syst. Evol. Microbiol. 55: 743-746 https://doi.org/10.1099/ijs.0.63323-0
  34. Rivas, R., P. F. Mateos, E. Martinez-Molina, and E. Velazquez. 2005. Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. Int. J. Syst. Evol. Microbiol. 55: 405-408 https://doi.org/10.1099/ijs.0.63173-0
  35. Rivas, R., M. E. Trujillo, P. Schumann, R. M. Kroppenstedt, M. Sanchez, P. F. Mateos, E. Martinez-Molina, and E. Velazquez. 2004. Xylanibacterium ulmi gen. nov., sp. nov., a novel xylanolytic member of the family Promicromonosporaceae. Int. J. Syst. Evol. Microbiol. 54: 557-561 https://doi.org/10.1099/ijs.0.02808-0
  36. Samain, E., P. Debeire, and J. P. Touzel. 1997. High level production of a cellulase-free xylanase in glucose-limited fed batch cultures of a thermophilic Bacillus strain. J. Biotechnol. 58: 71-78 https://doi.org/10.1016/S0168-1656(97)00140-5
  37. Subramaniyan, S. and P. Prema. 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183: 1-7 https://doi.org/10.1111/j.1574-6968.2000.tb08925.x
  38. Sunna, A. and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67 https://doi.org/10.3109/07388559709146606
  39. Teunissen, M. J., A. A. Smits, H. J. Op den Camp, J. H. Huis in 't Veld, and G. D. Vogels. 1991. Fermentation of cellulose and production of cellulolytic and xylanolytic enzymes by anaerobic fungi from ruminant and non-ruminant herbivores. Arch. Microbiol. 156: 290-296 https://doi.org/10.1007/BF00263000
  40. Thomson, J. A. 1993. Molecular biology of xylan degradation. FEMS Microbiol. Rev. 10: 65-82
  41. Viikari, L., A. Kantelineo, J. Bundquist, and M. Linko. 1994. Xylanase in bleaching: From an idea to the industry. FEMS Microbiol. Rev. 13: 335-350 https://doi.org/10.1111/j.1574-6976.1994.tb00053.x
  42. Wolf, M., A. Geczi, O. Simon, and R. Borriss. 1995. Genes encoding xylan and beta-glucan hydrolysing enzymes in Bacillus subtilis: Characterization, mapping and construction of strains deficient in lichenase, cellulase and xylanase. Microbiology 141: 281-290 https://doi.org/10.1099/13500872-141-2-281
  43. Wong, K. K., L. U. Tan, and J. N. Saddler. 1988. Multiplicity of beta-1,4-xylanase in microorganisms: Functions and applications. Microbiol. Rev. 52: 305-317