Fractions of Chamaecyparis obtusa Display Antiallergic Effect in RBL2H3 Cells

  • Choi, In-Gyu (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Kyung-Jong (School of Biological Sciences, College of Natural Sciences, Kangwon National University) ;
  • Kim, Young-Mi (School of Biological Sciences, College of Natural Sciences, Kangwon National University) ;
  • Park, Mi-Jin (Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Yun-Sil (Laboratory of Radiation Effect, Division of Radiation Biology, Korea Institute of Radiological and Medical Sciences) ;
  • Jeoung, Doo-Il (School of Biological Sciences, College of Natural Sciences, Kangwon National University)
  • Published : 2006.11.30

Abstract

Allergic inflammation results from stimulation of ${\beta}$-hexosaminidase secretion, increased calcium influx, and activation of MAPK pathways. Some fractions of Chamaecyparis obtusa decreased secretion of ${\beta}$-hexosaminidase, calcium influx, ROS, and phosphorylation of ERK. These results suggest that Chamaecyparis obtusa would be valuable for development of allergy therapeutics.

Keywords

References

  1. Baba, T., H. Nakano, K. Tamai, D. Sawamura, K. Hanada, I. Hashimoto, and Y. Arima. 1998. Inhibitory effect of beta-thujaplicin on ultraviolet B-induced apoptosis in mouse keratinocytes. J. Invest. Dermatol. 110: 24-28 https://doi.org/10.1046/j.1523-1747.1998.00078.x
  2. Cambier, J. C. 1995. Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine-based activation motif (ITAM). J. Immunol. 155: 3281-3285
  3. Cho, J., B. Sung, M. Lim, H. Kim, S. Lee, and H. Lee. 2004. Acaricidal components of medicinal plant oils against Dermatophagoides farinae and Dermatophagoides pteronyssinus. J. Microbiol. Biotechnol. 14: 631-634
  4. Gustafson, J., Y. Liew, and S. Chew. 1998. Effects of tea tree oil on Escherichia coli. Lett. Appl. Microbiol. 26: 194-198 https://doi.org/10.1046/j.1472-765X.1998.00317.x
  5. Halcun, L. and K. Milkus. 2004. Staphylococcus aureus and wounds: A review of tea tree oil as a promising antimicrobial. Am. J. Infect. Contr. 32: 402-408 https://doi.org/10.1016/j.ajic.2003.12.008
  6. Hampton, M. B., A. J. Kettle, and C. C. Winterbourn. 1998. Inside the neutrophil phagosome: Oxidants, myeloperoxidase, and bacterial killing. Blood 92: 3007-3014
  7. Ishimatsu, S., Y. Ohga, T. Ishidao, and H. Hori. 2003. Antimicrobial activity of hinokitiol against Legionella pneumophila. J. UOEH. 25: 435-439 https://doi.org/10.7888/juoeh.25.435
  8. Kim, H., D. Yoon, S. Lee, S. Baek, G. Han, Y. Kho, and C. Lee. 2005. Screening and biotransformation of interleukin-$1{\beta}$ converting enzyme production inhibitors from Arctii fructus. J. Microbiol. Biotechnol. 15: 269-273
  9. Kobayashi, T., T. Miura, T. Haba, M. Sato, I. Serizawa, H. Nagai, and K. Ishizaka. 2000. An essential role of mast cells in the development of airway hyperresponsiveness in a murine asthma model. J. Immunol. 164: 3855-3861 https://doi.org/10.4049/jimmunol.164.7.3855
  10. Matsuda, H., N. Watanabe, G. P. Geba, J. Sperl, M. Tsudzuki, J. Hiroi, M. Matsumoto, H. Ushio, S. Saito, P. W. Askenase, and C. Ra. 1997. Development of atopic dermatitis-like skin lesion with IgE hyperproduction in NC/Nga mice. Int. Immunol. 9: 461-466 https://doi.org/10.1093/intimm/9.3.461
  11. Matsui, T., Y. Suzuki, K. Yamashita, T. Yoshimaru, M. Suzuki-Karasaki, S. Hayakawa, M. Yamaki, and K. Shimizu. 2000. Diphenyleneiodonium prevents reactive oxygen species generation, tyrosine phosphorylation, and histamine release in RBL-2H3 mast cells. Biochem. Biophys. Res. Commun. 276: 742-748 https://doi.org/10.1006/bbrc.2000.3545
  12. Park, K. and H. Lee. 2005. In vitro antiviral activity of aqueous extracts from Korean medicinal plants against influenza virus type A. J. Microbiol. Biotechnol. 15: 924-929
  13. Pawankar, R., M. Okuda, H. Yssel, K. Okumura, and C. Ra. 1997. Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the Fc epsilonRI, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells. J. Clin. Invest. 99: 1492-1499 https://doi.org/10.1172/JCI119311
  14. Reth, M. 1989. Antigen receptor tail clue. Nature 338: 383-384
  15. Ro, J. Y., B. C. Lee, J. Y. Kim, Y. J. Chung, M. H. Chung, S. K. Lee, T. H. Jo, K. H. Kim, and Y. I. Park. 2000. Inhibitory mechanism of aloe single component (alprogen) on mediator release in guinea pig lung mast cells activated with specific antigen-antibody reactions. J. Pharmacol. Exp. Ther. 292: 114-121
  16. Wange, R. L. and L. E. Samelson. 1996. Complex complexes: Signaling at the TCR. Immunity 5: 197-205 https://doi.org/10.1016/S1074-7613(00)80315-5
  17. Williams, C. M. and S. J. Galli. 2000. Mast cells can amplify airway reactivity and features of chronic inflammation in an asthma model in mice. J. Exp. Med. 192: 455-462 https://doi.org/10.1084/jem.192.3.455
  18. Yoshimaru, T., Y. Suzuki, T. Matsui, K. Yamashita, T. Ochiai, M. Yamaki, and K. Shimizu. 2002. Blockade of superoxide generation prevents high-affinity immunoglobulin E receptor-mediated release of allergic mediators by rat mast cell line and human basophils. Clin. Exp. Allergy 32: 612-618 https://doi.org/10.1046/j.0954-7894.2002.01263.x