Immunological Characterization of Full and Truncated Recombinant Clones of ompH(D:4) Obtained from Pasteurella multocida (D:4) in Korea

  • Kim, Young-Hwan (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Cheong, Ki-Young (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Shin, Woo-Seok (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Hong, Sung-Youl (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Woo, Hee-Jong (Laboratory of Immunology, College of Veterinary Medicine, Seoul National University) ;
  • Kwon, Moo-Sik (Department of Genetic Engineering, Sungkyunkwan University)
  • Published : 2006.10.31

Abstract

We cloned a gene of ompH(D:4) from pigs infected with P. multocida D:4 in Korea [16]. The gene is composed of 1,026 nucleotides coding 342 amino acids (aa) with a signal peptide of 20 aa (GenBank accession number AY603962). In this study, we analyzed the ability of the ompH(D:4) to induce protective immunity against a wild-type challenge in mice. To determine appropriate epitope(s) of the gene, one full and three different types of truncated genes of the ompH(D:4) were constructed by PCR using pET32a or pRSET B as vectors. They were named ompH(D:4)-F (1,026 bp [1-1026] encoding 342 aa), ompH(D:4)-t1 (693 bp [55-747] encoding 231 aa), ompH(D:4)-t2 (561 bp [187-747] encoding 187 aa), and ompH(D:4)-t3 (540 bp [487-1026] encoding 180 aa), respectively. The genes were successfully expressed in Escherichia coli BL21(DE3). Their gene products, polypeptides, OmpH(D:4)-F, -t1, -t2, and -t3, were purified individually using nickel-nitrilotriacetic acid (Ni-NTA) affinity column chromatography. Their $M_rs$ were determined to be 54.6, 29, 24, and 23.2 kDa, respectively, using SDS-PAGE. Antisera against the four kinds of polypeptides were generated in mice for protective immunity analyses. Some $50{\mu}g$ of the four kinds of polypeptides were individually provided intraperitoneally with mice (n=20) as immunogens. The titer of post-immunized antiserum revealed that it grew remarkably compared with pre-antiserum. The lethal dose of the wild-type pathogen was determined at $10{\mu}l$ of live P. multocida D:4 through direct intraperitoneal (IP) injection, into post-immune mice (n=5, three times). Some thirty days later, the lethal dose ($10{\mu}l$) of live pathogen was challenged into the immunized mouse groups [OmpH(D:4)-F, -t1, -t2, and -t3; n=20 each, two times] as well as positive and negative control groups. As compared within samples, the OmpH(D:4)-F-immunized groups showed lower immune ability than the OmpH(D:4)-t1, -t2, and -t3. The results show that the truncated-OmpH(D:4)-t1, -t2, and -t3 can be used for an effective vaccine candidate against swine atrophic rhinitis caused by pathogenic P. multocida (D:4) isolated in Korea.

Keywords

References

  1. Adler, B., D. Bulach, J. Chung, S. Doughty, M. Hunt, K. Rajakumar, M. Serrano, A. Zanden, Y. Zhang, and C. Ruffolo. 1999. Candidate vaccine antigens and genes in Pasteurella multocida. J. Biotech. 73: 83-90 https://doi.org/10.1016/S0168-1656(99)00111-X
  2. Baldwin, M. R., J. H. Lakey, and A. J. Lax. 2004. Identification and characterization of the Pasteurella multocida toxin translocation domain. Mol. Microbiol. 54: 239-250 https://doi.org/10.1111/j.1365-2958.2004.04264.x
  3. Bowland, S. L. and P. E. Shewen. 2000. Bovine respiratory disease: Commercial vaccines currently available in Canada. Can. Vet. J. 41: 33-48
  4. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Busch, C., J. Orth, N. Djouder, and K. Aktories. 2001. Biological activity of a C-terminal fragment of Pasteurella multocida toxin. Infect. Immun. 69: 3628-3634 https://doi.org/10.1128/IAI.69.6.3628-3634.2001
  6. Carter, G. R. 1967. Pasteurella multocida and Pasteurella haemolytica. Adv. Vet. Sci. Comp. Med. 11: 321-379
  7. Chevalier, G., H. Duchlohier, D. Thomas, E. Shechter, and H. Roblewski. 1993. Purification and characterization of protein H, the major porin of Pasteurella multocida. J. Bacteriol. 175: 266-276 https://doi.org/10.1128/jb.175.1.266-276.1993
  8. Confer, A. W., S. H. Nutt, S. M. Dabo, R. J. Panciera, and G. L. Murphy. 1996. Antibody responses of cattle to outer membrane proteins of Pasteurella multocida A:3. Am. J. Vet. Res. 57: 1453-1457
  9. Dabo, S. M., A. W. Confer, and R. A. Quijano-Blas. 2003. Molecular and immunological characterization of Pasteurella multocida serotype A:3 OmpA: Evidence of its role in P. multocida interaction with extracellular matrix molecules. Microb. Pathogen. 35: 147-157 https://doi.org/10.1016/S0882-4010(03)00098-6
  10. Dabo, S. M., A. W. Confer, and G. L. Murphy. 1997. Outer membrane proteins of bovine Pasteurella multocida serogroup A isolates. Vet. Microbiol. 54: 167-183 https://doi.org/10.1016/S0378-1135(96)01274-6
  11. Hofacre, C. 1986. A serotypic survey of Pasteurella multocida isolated from poultry. Avian Dis. 30: 632-633 https://doi.org/10.2307/1590437
  12. Hunt, M. L., B. Adler, and K. M. Townsend. 2000. The molecular biology of Pasteurella multocida. Vet. Microbiol. 72: 3-25 https://doi.org/10.1016/S0378-1135(99)00183-2
  13. Kasten, R. W., L. M. Hansen, J. Hinojoza, D. Bieber, W. W. Ruehl, and D. C. Hirsh. 1995. Pasteurella multocida produces a protein with homology to the P6 outer membrane protein of Haemophilus influenzae. Infect. Immun. 63: 989-993
  14. Kim, T. W., H. S. Song, and H. Y. Kim. 2005. Distribution of dominant bifidobacteria in the intestinal microflora of Korean adults and seniors, identified by SDS-PAGE of whole cell proteins and 16S rDNA sequence analysis. J. Microbiol. Biotechnol. 15: 388-394
  15. Kim, S.-Y. and J.-Y. Cho. 2005. A modified PCR-directed gene replacements method using ${\lambda}$-red recombination functions in Escherichia coli. J. Microbiol. Biotechnol. 15: 1346-1352
  16. Lee, J., S. Kang, S. I. Park, H.-J. Woo, and M. Kwon. 2004. Molecular cloning and characterization of the gene for outer membrane protein H in a Pasteurella multocida (D:4) isolate from pigs with atrophic rhinitis symptoms in Korea. J. Microbiol. Biotechnol. 14: 1343-1349
  17. Loosmore, S. M., Y. P. Yang, D. C. Coleman, J. M. Shortreed, D. M. England, and M. H. Klein. 1997. Outer membrane protein D15 is conserved among Haemophilus influenzae species and may represent a universal protective antigen against invasive disease. Infect. Immun. 65: 3701-3707
  18. Lugtenberg, B., R. Boxtel, D. Evenberg, M. Jong, P. Storm, and J. Frik. 1986. Biochemical and immunological characterization of cell surface proteins of Pasteurella multocida strains causing atrophic rhinitis in swine. Infect. Immun. 52: 175-182
  19. Luo, Y., J. R. Glisson, M. W. Jackwood, R. E. Hancock, M. Bains, I. H. Cheng, and C. Wang. 1997. Cloning and characterization of the major outer membrane protein gene (ompH) of Pasteurella multocida X-73. J. Bacteriol. 179: 7856-7864 https://doi.org/10.1128/jb.179.24.7856-7864.1997
  20. Mitchison, M., L. Wei, J. Kwang, I. Wilkie, and B. Adler. 2000. Overexpression and immunogenicity of the Oma87 outer membrane protein of Pasteurella multocida. Vet. Microbiol. 72: 91-96 https://doi.org/10.1016/S0378-1135(99)00190-X
  21. Orth, J. H., D. Blocker, and K. Aktories. 2003. His1205 and His1223 are essential for the activity of the mitogenic Pasteurella multocida. J. Comp. Pathol. 94: 203-214
  22. Pullinger, G. D., R. Sowdhamini, and A. J. Lax. 2001. Localization of functional domains of the mitogenic toxin of Pasteurella multocida. Infect. Immun. 69: 7839-7850 https://doi.org/10.1128/IAI.69.12.7839-7850.2001
  23. Rutter, J. M. 1985. Atrophic rhinitis in swine. Adv. Vet. Sci. Comp. Med. 29: 239-279
  24. Ryou, C. and M. Kwon. 2000. Immunochemical studies on expression of quinoproteins in Escherichia coli. J. Microbiol. Biotechnol. 10: 95-98
  25. Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467
  26. Shin, H.-J., S.-K. Lee, J. J. Choi, S. Koh, J.-H. Lee, S.-J. Kim, and S.-T. Kwon. 2005. Cloning, expression, and characterization of a family B-type DNA polymerase from the hyperthermophilic crenarchaeon Pyrobaculum arsenaticum its application to PCR. J. Microbiol. Biotechnol. 15: 1359-1367
  27. Vasfi, M., J. Harel, and K. R. Mittal. 1997. Identification by monoclonal antibodies of serotype D strains of Pasteurella multocida representing various geographic origins and host species. J. Med. Microbiol. 46: 1-8 https://doi.org/10.1099/00222615-46-1-1
  28. Wang, C. and J. R. Glisson. 1994. Identification of common antigens of serotype 1 and serotype 3 Pasteurella multocida in poultry expressed in vivo. Avian Dis. 38: 334-340 https://doi.org/10.2307/1591959
  29. Yang, Y., W. R. Thomas, P. Chong, S. M. Loosmore, and M. H. Klein. 1998. A 20-kilodalton N-terminal fragment of the D15 protein contains a protective epitope(s) against Haemophilus influenzae type a and type b. Infect. Immun. 66: 3349-3354
  30. Zhang, H., A. J. Ainsworth, and R. D. Montgomery. 1994. Use of a 35.5 kDa cell membrane composition of Pasteurella multocida and an anti-idiotype antibody to induce protective immunity in leghorn chickens. Vet. Immunol. Immunopathol. 41: 89-100 https://doi.org/10.1016/0165-2427(94)90059-0