Polyphasic Assignment of a Highly Proteolytic Bacterium Isolated from a Spider to Serratia proteamaculans

  • Kwak, Jang-Yul (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Lee, Dong-Hun (School of Life Sciences, Chungbuk National University) ;
  • Park, Youn-Dong (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Seung-Bum (Department of Microbiology, Chungnam National University) ;
  • Maeng, Jin-Soo (Laboratory of Biophysical Chemistry, National Heart, Lung and Blood Institute, National Institutes of Health) ;
  • Oh, Hyun-Woo (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Ho-Yong (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Bae, Kyung-Sook (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Published : 2006.10.31

Abstract

A bacterial strain named HY-3 that produces a highly active extracellular protease was isolated from the digestive tract of a spider, Nephila clavata. The bacterium was a Gram-negative, oxidase-negative, catalase-positive, nonhalophilic, nitrate-reducing, facultative anaerobe. Transmission and scanning electron microscopies demonstrated that the isolate was non-spare-forming, straight, rod-shaped, and motile by peritrichous flagella. The G+C content of the DNA was 57.0 mol%. The isoprenoid quinone type was ubiquinone with 8 isoprene units (Q-8). The morphological and biochemical characteristics including the predominant fatty acid and phospholipids profiles placed the isolate HY-3 in the family Enterobacteriaceae. Further biochemical characterization and phylogenetic studies including determination of an almost complete 16S ribosomal DNA sequence suggested that the bacterium was closely related to the genus Serratia. DNA-DNA hybridization analysis revealed that this extracellular protease-producing strain belongs to Serratia proteamaculans, which is also known far its association with insects.

Keywords

References

  1. Beji, A., D. Izard, F. Gavini, H. Leclerc, M. Leseine-Delstanche, and J. Krembel. 1987. A rapid chemical procedure for isolation and purification of chromosomal DNA from Gramnegative bacilli. Anal. Biochem. 162: 18-23 https://doi.org/10.1016/0003-2697(87)90005-4
  2. Bowen, D. J. and J. C. Ensign. 1998. Purification and characterization of a high-molecular-weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Appl. Environ. Microbiol. 64: 3029-3035
  3. Bowen, D. J., T. A. Rocheleau, C. K. Grutzmacher, L. Meslet, M. Valens, D. Marble, A. Dowling, R. Ffrench-Constant, and M. A. Blight. 2003. Genetic and biochemical characterization of PrtA, an RTX-like metalloprotease from Photorhabdus. Microbiology 149: 1581-1591 https://doi.org/10.1099/mic.0.26171-0
  4. Braun, V. and G. Schmitz. 1980. Excretion of a protease by Serratia marcescens. Arch. Microbiol. 124: 55-61 https://doi.org/10.1007/BF00407028
  5. Collins, M. D. and D. Jones. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol. Rev. 45: 316-354
  6. De Lay, J. 1970. Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J. Bacteriol. 101: 738-754
  7. Decedue, C. J., E. A. Broussard, 2nd, A. D. Larson, and H. D. Braymer. 1979. Purification and characterization of the extracellular proteinase of Serratia marcescens. Biochim. Biophys. Acta 569: 293-301 https://doi.org/10.1016/0005-2744(79)90065-2
  8. Delepelaire, P. and C. Wandersman. 1989. Protease secretion by Erwinia chrysanthemi. Proteases B and C are synthesized and secreted as zymogens without a signal peptide. J. Biol. Chem. 264: 9083-9089
  9. Edwards, P. R. and W. H. Ewing. 1972. Identification of Enterobacteriaceae. Burgess Publishing Co., Minneapolis, MN
  10. Felsenstein, J. 1985. Confidence limits on phylogenetics: An approach using the bootstrap. Evolution 39: 783-791 https://doi.org/10.2307/2408678
  11. Felsenstein, J. 1993. PHYLIP (phylogenetic inference package) version 3.5c. University of Washington, Seattle, WA
  12. Fitch, W. M. 1972. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool. 20: 406-416 https://doi.org/10.2307/2412116
  13. Fitch, W. M. and E. Margoliash. 1967. Construction of phylogenetic trees: A method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155: 279-284 https://doi.org/10.1126/science.155.3760.279
  14. Flyg, C., K. Kenne, and H. G. Boman. 1980. Insect pathogenic properties of Serratia marcescens: Phage-resistant mutants with a decreased resistance to Cecropia immunity and a decreased virulence to Drosophila. J. Gen. Microbiol. 120: 173-181
  15. Gerhardt, P., R. G. E. Murray, W. A. Wood, and N. R. Krieg. 1994. Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C
  16. Glare, T. R., G. E. Corbett, and T. J. Sadler. 1993. Association of a large plasmid with amber disease of the New Zealand grass grub, Costelytra zealandica, caused by Serratia entomophila and S. proteamaculans. J. Invertebr. Pathol. 62: 165-170 https://doi.org/10.1006/jipa.1993.1091
  17. Grkovic, S. and H. K. Mahanty. 1996. Investigation of a phage resistant Serratia entomophila strain (BC4B), establishment of generalised transduction and construction of S. entomophila RecA mutants. Mol. Gen. Genet. 250: 323-328
  18. Guckert, J. B., D. B. Ringelberg, D. C. White, R. S. Hanson, and B. J. Bratina. 1991. Membrane fatty acids as phenotypic markers in the polyphasic taxonomy of methylotrophs within the Proteobacteria. J. Gen. Microbiol. 137: 2631-2641 https://doi.org/10.1099/00221287-137-11-2631
  19. Gyaneshwar, P., P. M. Reddy, and J. K. Ladha. 2000. Nutrient amendments influence endophytic colonization of rice by Serratia marcescens IRBG500 and Herbaspirillum seropedicae Z67. J. Microbiol. Biotechnol. 10: 694-699
  20. Jukes, T. H. and C. R. Cantor. 1969. Evolution of Protein Molecules, pp. 21-132. Academic Press, New York, N.Y
  21. Kling, J. J., R. L. Wright, J. S. Moncrief, and T. D. Wilkins. 1997. Cloning and characterization of the gene for the metalloprotease enterotoxin of Bacteroides fragilis. FEMS Microbiol. Lett. 146: 279-284 https://doi.org/10.1111/j.1574-6968.1997.tb10205.x
  22. Krieg, N. R. and J. G. Holt (eds.). 1984. Bergey's Manual of Systematic Bacteriology, Vol. 1. Williams & Wilkins, Baltimore, MD
  23. Kwak, J., K. Lee, D.-H. Shin, K.-S. Bae, and H.-Y. Park. 2006. Biochemical and genetic characterization of an extracellular metalloprotease in Serratia proteamaculans isolated from a spider. In preparation
  24. Lane, D. J. 1991. 16S/23S rRNA sequencing, pp. 115-175. In Stackebrandt, E. and M. Goodfellow (eds.). Nucleic Acid Techniques in Bacterial Systematics. Wiley
  25. Leifson, E. 1963. Determination of carbohydrate metabolism of marine bacteria. J. Bacteriol. 85: 1183-1184
  26. Lyerly, D. M. and A. S. Kreger. 1983. Importance of Serratia protease in the pathogenesis of experimental Serratia marcescens pneumonia. Infect. Immun. 40: 113-119
  27. Maeda, H. and K. Morihara. 1995. Serralysin and related bacterial proteinases. Methods Enzymol. 248: 395-413 https://doi.org/10.1016/0076-6879(95)48026-9
  28. Maidak, B. L., N. Larsen, M. J. McCaughey, R. Overbeek, G. J. Olsen, K. Fogel, J. Blandy, and C. R. Woese. 1994. The ribosomal database project. Nucleic Acids Res. 22: 3485-3487 https://doi.org/10.1093/nar/22.17.3485
  29. Mamur, J. 1961. A procedure for the isolation of deoxyribonucleic acid from microorganisms. J. Mol. Biol. 3: 208-218 https://doi.org/10.1016/S0022-2836(61)80047-8
  30. Mamur, J. and P. Doty. 1962. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5: 109-118 https://doi.org/10.1016/S0022-2836(62)80066-7
  31. Matsumoto, K., H. Maeda, K. Takata, R. Kamata, and R. Okamura. 1984. Purification and characterization of four proteases from a clinical isolate of Serratia marcescens kums 3958. J. Bacteriol. 157: 225-232
  32. Mitchell, R. J., J. M. Ahn, and M. B. Gu. 2005. Comparison of Photorhabdus luminescens and Vibrio fischeri Lux fusions to study gene expression patterns. J. Microbiol. Biotechnol. 15: 48-54
  33. Miyata, K., M. Tsuda, and K. Tomoda. 1980. Determination of Serratia protease by radioimmunoassay. Anal. Biochem. 101: 332-338 https://doi.org/10.1016/0003-2697(80)90196-7
  34. Miyoshi, S. and S. Shinoda. 2000. Microbial metalloproteases and pathogenesis. Microbes Infect. 2: 91-98 https://doi.org/10.1016/S1286-4579(00)00280-X
  35. Moon, E. Y., H. Y. Oh, P. J. Maeng, and K. S. Bae. 2001. Identification of enteric bacteria from Nephila clavata. Kor. J. Microbiol. 37: 1-8
  36. Raveneau, J., C. Geoffroy, J. L. Beretti, J. L. Gaillard, J. E. Alouf, and P. Berche. 1992. Reduced virulence of a Listeria monocytogenes phospholipase-deficient mutant obtained by transposon insertion into the zinc metalloprotease gene. Infect. Immun. 60: 916-921
  37. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  38. Schmitz, G. and V. Braun. 1985. Cell-bound and secreted proteases of Serratia marcescens. J. Bacteriol. 161: 1002-1009
  39. Smibert, R. M. and N. R. Krieg. 1991. Phenotypic characterization, pp. 607-654. In Gerhardt, P., R. G. E. Murray, W. A. Wood, and N. R. Krieg (eds.). Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C
  40. Thomson, N. R., M. A. Crow, S. J. McGowan, A. Cox, and G. P. Salmond. 2000. Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol. Microbiol. 36: 539-556 https://doi.org/10.1046/j.1365-2958.2000.01872.x
  41. Tindall, B. J. 1990. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst. Appl. Microbiol. 13: 128-130 https://doi.org/10.1016/S0723-2020(11)80158-X
  42. Upadhyaya, N. M., T. R. Glare, and H. K. Mahanty. 1992. Identification of a Serratia entomophila genetic locus encoding amber disease in New Zealand grass grub (Costelytra zealandica). J. Bacteriol. 174: 1020-1028 https://doi.org/10.1128/jb.174.3.1020-1028.1992
  43. Wayne, L. G., D. J. Brenner, R. R. Colwell, P. A. D. Grimont, O. Kandler, M. I. Krichevsky, L. H. Moore, W. E. C. Moore, R. G. E. Murray, E. Stackebrandt, M. P. Starr, and H. G. Truper. 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464 https://doi.org/10.1099/00207713-37-4-463
  44. Wolz, R. L. and J. S. Bond. 1990. Phe5(4-nitro)-bradykinin: A chromogenic substrate for assay and kinetics of the metalloendopeptidase meprin. Anal. Biochem. 191: 314-320 https://doi.org/10.1016/0003-2697(90)90225-X
  45. Yoo, J.-S., H.-S. Kim, S.-Y. Chung, and Y.-L. Choi. 2000. Molecular characterization of crp, the cyclic AMP receptor protein gene of Serratia marcescens KCTC 2172. J. Microbiol. Biotechnol. 10: 670-676
  46. Yoo, J.-S., H.-S. Kim, Y.-C. Lee, S.-Y. Chung, and Y.-L. Choi. 2001. Molecular characterization of the genes encoding acetoacetyl-coenzyme a transferase from Serratia marcescens KCTC 2172. J. Microbiol. Biotechnol. 11: 870-875