• Title/Summary/Keyword: OmpH

Search Result 37, Processing Time 0.027 seconds

Outer Membrane Protein H for Protective Immunity Against Pasteurella multocida

  • Lee, Jeong-Min;Kim, Young-Bong;Kwon, Moo-Sik
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.179-184
    • /
    • 2007
  • Pasteurella multocida, a Gram-negative facultative anaerobic bacterium, is a causative animal pathogen in porcine atrophic rhinitis and avian fowl cholera. For the development of recombinant subunit vaccine against P. multocida, we cloned and analyzed the gene for outer membrane protein H (ompH) from a native strain of Pasteurella multocida in Korea. The OmpH had significant similarity in both primary and secondary structure with those of other serotypes. The full-length, and three short fragments of ompH were expressed in E. coli and the recombinant OmpH proteins were purified, respectively. The recombinant OmpH proteins were antigenic and detectable with antisera produced by either immunization of commercial vaccine for respiratory disease or formalin-killed cell. Antibodies raised against the full-length OmpH provided strong protection against P. multocida, however, three short fragments of recombinant OmpHs, respectively, showed slightly lower protection in mice challenge. The recombinant OmpH might be a useful vaccine candidate antigen for P. multocida.

Molecular Cloning and Expression of a Gene for Outer Membrane Protein H in Pasteurella multocida (A:3) : Production of Antisera against the OmpH (파스튜렐라 (A:3)외막 단백질 H의 유전자 클론닝$\cdot$발현 및 면역혈청 생산)

  • Kim Younghwan;Hwang Heon;Lee Sukchan;Park Eun-Seok;Yoo Sun-Dong;Lee Jeongmin;Yang Joo-Sung;Kwon MooSik
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.4
    • /
    • pp.274-280
    • /
    • 2005
  • Pasteurella multocida is known to cause widespread infections in husbandry. To induce homologous and heterologous immunity against the infections, outer membrane proteins (OMPs) in the envelope of P. multocida are thought to be attractive vaccine candidates. Outer membrane protein H is considered as the major component of OMPs. In this study, a gene for OmpH was isolated from pathogenic P. multocida serogroup A. The gene was composed of 1,047 nucleotides coding 348 amino acids with signal peptide of 20 amino acids. The amino acid composition showed about 80 to 98 per cent sequence homologies among other 10 strains of P. multocida serogroup A, reported so far. A recombinant ompH, from which signal peptide was truncated, was generated using pRSET A to name 'pRSET A/OmpH-F2'. The pRSET A/OmpH-F2 was well expressed in E. coli BL21(DE3). The truncated OmpH was purified using nickel-nitrilotriacetic acid (Ni-NTA) affinity column chromatography. Its molecular weight was registered to be 40 kDa on SDS-PAGE gel. In order to generate immunesera against the OmpH, 50 ug of the protein was intraperitoneally injected into mice three times. The anti-OmpH immuneserum recognized about $5{\times}10^{-2}$ng quantity of the purified OmpH. It can be used for an effective vaccine production to prevent fowl cholera caused by pathogenic P. multocida (Serogroup A).

A Comparative Study on the Pharmaceutical Properties of Rectal Suppository containing Omeprazole Complexes (오메프라졸복합체 함유 직장좌제의 특성비교)

  • Hwang, Sung-Joo;Park, Sung-Bae;Rhee, Gye-Ju
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.3
    • /
    • pp.227-237
    • /
    • 1995
  • Omeprazole(OMP) complexes such as inclusion complexes of OMP with $hydroxypropyl-{\beta}-cyclodextrin$(HPCD) and ${\beta}-cyclodextrin({\beta}-CD)$, OMP-cholestyramine(CHL) and OMP-ethylenediamine(OMP-ED) were prepared, respectively. The partition coefficients in Witepsol H-15 /pH 7.4 phosphate buffer solution of OMP complexes$(OMP-HPCD;\;3.69{\pm}0.26,\;OMP-{\beta}-CD;\;4.08{\pm}0.21,\;OMP-CHL;\;4.36{\pm}0.25\;and\;omeprazole\;sodium(OMP-Na);\;3.64{\pm}0.37)$ were higher than that of OMP $(2.66{\pm}0.47)$. OMP was not completely dissolved until even 3 hrs, but all the OMP complexes studied were released about 100% in 20 min. The rectal suppositories containing OMP or each above OMP complex were prepared using Witepsol H-15 base, and their dissolution and stability were examined, and pharmacokinetic study were investigated after their rectal administrations to the rabbits. While the suppository containing OMP was released only less than 60% in 150 min, $OMP-{\beta}-CD$, OMP-CHL, OMP-Na and OMP-ED suppositories were all released about 65% in 20 min. Especially, OMP-HPCD suppository released OMP about 70% in 10 min. All the additives such as sodium laurylsulfate, eglumine, arginine and PVP increased drug release from OMP-HPCD suppository to some extent. The decomposition rate constants of OMP in the suppositories were $9.117{\times}10^{-3}\;day^{-l}$ for OMP suppository, $2.121{\times}10^{-2}$ for OMP-HPCD, $1.607{\times}10^{-2}$ for $OMP-{\beta}-CD$, $9.26{\times}10^{-3}$ for OMP-Na, $6.769{\times}10^{-3}$ for OMP-CHL and $5.58{\times}10^{-3}\;day^{-l}$ for OMP-ED suppository, respectively. Additives such as arginine, eglumine and ED had some stabilizing effect for OMP-HPCD, OMP-CHL and OMP-Na suppositories, respectively. After 6 month-storage at $30^{\circ}C$, 75% RH, OMP-CHL suppository was most stable. The values of Tmax for OMP-HPCD and OMP-Na suppositories were $11.7{\pm}2.36\;and\;11.4{\pm}2.56\;min$, respectively. The values of Cmax for OMP-HPCD and OMP-CHL suppository were $2.31\;{\mu}g/ml\;(p<0.01)\;and\;1.89\;{\mu}g/ml\;p<0.01)$, respectively. The values of AUC for OMP and $OMP-{\beta}-CD$ suppository were $61.9{\pm}25.79\;and\;68.6{\pm}29.48\;{\mu}g\;{\cdot}\;min/ml$, and the corresponding values for OMP-HPCD and OMP-CHL were $106.1{\pm}43.16\;(p<0.05)\;and\;127.3{\pm}42.52\;{\mu}g\;{\cdot}\;min/ml(p<0.01)$, respectively. The above results indicate the OMP-HPCD and OMP-CHL suppositories have the excellent bioavailabilties in vivo study.

  • PDF

Protective immunity induced by recombinant outer membrane protein H of pasteurella multocida (A:3) of fowl cholera in mice (파스튜렐라(A : 3) 균주의 재조합 외막단백질 H에 의한 가금 콜레라 감염 생쥐의 면역성 검정)

  • Kim, Younghwan;Yang, Joo-Sung;Kwon, Moosik
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.2
    • /
    • pp.127-133
    • /
    • 2006
  • Pasteurella multocida is a terrible veterinary pathogen that causes widespread infections in husbandry. To induce homologous and/or heterologous immunity against the infections, outer membrane protein Hs (OmpH) in the envelope of different strains of P. multocida are thought to be attractive vaccine candidates. Previously we cloned and characterized a gene for OmpH from pathogenic P. multocida (A : 3) (In Press, Korean J. Microbiol. Biotechnol. 2005, 33, December). The gene is composed of 1,047 nucleotides (nt) coding 348 amino acids (aa) with signal peptide of 20 aa. The truncated ompH, a gene without nt coding for the signal peptide, was generated using pRSET A to name "pRSET A/OmpH-F2". This truncated ompH was well expressed in Escherichia coli BL21 (DE3). Truncated OmpH was purified for induction of immunity against live pathogen of fowl cholera (P. multocida A : 3) in mice. Some $50{\mu}g$ of the purified polypeptide was intraperitoneally injected into mice two times with 10 day interval. Lethal dose ($25{\mu}l$) of live P. multocida A : 3 was determined by directly injecting the pathogen into wild mice (n = 25). To demonstrate the vaccine candidate of the truncated OmpH, the live pathogen ($25{\mu}l$) was challenged with the OmpH-immunized mouse group as well as positive & negative controls (n = 80). The results show that the truncated OmpH can be used for an effective vaccine production to prevent fowl cholera caused by pathogenic P. multocida (A : 3).

Immunological Characterization of Full and Truncated Recombinant Clones of ompH(D:4) Obtained from Pasteurella multocida (D:4) in Korea

  • Kim, Young-Hwan;Cheong, Ki-Young;Shin, Woo-Seok;Hong, Sung-Youl;Woo, Hee-Jong;Kwon, Moo-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1529-1536
    • /
    • 2006
  • We cloned a gene of ompH(D:4) from pigs infected with P. multocida D:4 in Korea [16]. The gene is composed of 1,026 nucleotides coding 342 amino acids (aa) with a signal peptide of 20 aa (GenBank accession number AY603962). In this study, we analyzed the ability of the ompH(D:4) to induce protective immunity against a wild-type challenge in mice. To determine appropriate epitope(s) of the gene, one full and three different types of truncated genes of the ompH(D:4) were constructed by PCR using pET32a or pRSET B as vectors. They were named ompH(D:4)-F (1,026 bp [1-1026] encoding 342 aa), ompH(D:4)-t1 (693 bp [55-747] encoding 231 aa), ompH(D:4)-t2 (561 bp [187-747] encoding 187 aa), and ompH(D:4)-t3 (540 bp [487-1026] encoding 180 aa), respectively. The genes were successfully expressed in Escherichia coli BL21(DE3). Their gene products, polypeptides, OmpH(D:4)-F, -t1, -t2, and -t3, were purified individually using nickel-nitrilotriacetic acid (Ni-NTA) affinity column chromatography. Their $M_rs$ were determined to be 54.6, 29, 24, and 23.2 kDa, respectively, using SDS-PAGE. Antisera against the four kinds of polypeptides were generated in mice for protective immunity analyses. Some $50{\mu}g$ of the four kinds of polypeptides were individually provided intraperitoneally with mice (n=20) as immunogens. The titer of post-immunized antiserum revealed that it grew remarkably compared with pre-antiserum. The lethal dose of the wild-type pathogen was determined at $10{\mu}l$ of live P. multocida D:4 through direct intraperitoneal (IP) injection, into post-immune mice (n=5, three times). Some thirty days later, the lethal dose ($10{\mu}l$) of live pathogen was challenged into the immunized mouse groups [OmpH(D:4)-F, -t1, -t2, and -t3; n=20 each, two times] as well as positive and negative control groups. As compared within samples, the OmpH(D:4)-F-immunized groups showed lower immune ability than the OmpH(D:4)-t1, -t2, and -t3. The results show that the truncated-OmpH(D:4)-t1, -t2, and -t3 can be used for an effective vaccine candidate against swine atrophic rhinitis caused by pathogenic P. multocida (D:4) isolated in Korea.

Interaction between Omeprazole and $\gamma$-Cyclodextrin (오메프라졸과 $\gamma$-시클로덱스티린과의 복합체 형성 및 제제학적 특성)

  • 이계주;김은영
    • YAKHAK HOEJI
    • /
    • v.39 no.2
    • /
    • pp.175-184
    • /
    • 1995
  • The interaction of omeprazole(OMP) with $\gamma$-cyclodextrin($\gamma$-CyD) was investigated by solubility study and the complexation was confirmed by means of UV/VIS spectrophotometer, circular dichroism, differential scanning calorimeter, and $^{1}$H nuclear magnetic resonance spectra. The stability, dissolution rate, and partition coefficient of the complex were measured. The results present that the benzimidazole moiety and a part of pyridine ring containing sulfur atom of OMP might be included into the cavity of $\gamma$-CyD and the formation type of inclusion complex appeared to be B$_{s}$. The stoichiometric ratio of OMP to $\gamma$-CyD in the complex was found to be 1:1 and the stability constant of the complex found to be 97.1 M$^{-1}$. And the dissolution rate of OMP was markedly increased by inclusion complex formation with $\gamma$-CyD, and so it was above 90% in 5 min. from solid complex. Oil to water partition coefficient of OMP-$\gamma$-CyD complex was 60, which is significantly higher than that of OMP itself, 36.4. The degradation rate constant of OMP were greater than OMP-$\gamma$-CyD complex in aqueous solutions of various pHs, and the half lives of OMP and OMP-$\gamma$-CyD at pH 9 were 279.2 and 509.9 days, respectively, showing that the complex was more stable than OMP, therefore it was thought that OMP was stabilized by inclusion formation with $\gamma$-CyD.

  • PDF

Molecular Cloning and Characterization of the Gene for Outer Membrane Protein H in a Pasteurella multocida (D:4) Isolate from Pigs with Atrophic Rhinitis Symptoms in Korea

  • LEE, JEONG-MIN;KANG, SEO-YOUNG;PARK, SHIN-IN;WOO, HEE-JONG;KWON, MOO-SIK
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1343-1349
    • /
    • 2004
  • A native strain of Pasteurella multocida was isolated from pigs suffering from severe atrophic rhinitis at domestic farms in Gyeonggi Province, Korea, and was identified as capsular serogroup 'D' and somatic serotype '4' by disc diffusion decapsulation and gel diffusion precipitation tests, respectively. The P. multocida (D:4) induced atrophic rhinitis in healthy pigs by the secondary infection. The gene for outer membrane protein H (ompH) of P. multocida (D:4) was cloned in Escherichia coli DH5$\alpha$ by PCR. The open reading frame of the ompH was composed of 1,023 bp, possibly encoding a protein with 341 amino acid residues containing a signal peptide of 20 amino acids at N-terminus, and the gene product with molecular mass of ca. 38 kDa was identified by SDS-PAGE. Hydropathy profiles indicated that there are two variable domains in the OmpH. To express the ompH in E. coli, the gene was manipulated in various ways. Expression of the truncated as well as full-length forms of the recombinant OmpH was fatal to the host E. coli BL21 (DE3). However, the truncated OmpH fused with GST was consecutively expressed in E. coli DH5$\alpha$. A large quantity of the fused polypeptide was purified through GST-affinity chromatography.

Immunogenicity of Recombinant Outer Membrane Protein H from Pasteurella multocida (재조합 파스튜렐라 외막 단백질 H의 면역원성 검정)

  • Lee Jeong-Min
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.273-277
    • /
    • 2006
  • To investigate the antigenicity and protective immunity of outer membrane protein H (OmpH) in Pasteurella multocida D:4, the recombinant OmpH protein was produced in Escherichia coli. The truncated and Trx-fused form of recombinant OmpH (53 kDa) was purified, and used as an antigen in the immunization and challenge experiment. The immunized mice with the recombinant OmpH produced a high-titer antibody, and had protective immunity against P. multocida as same level as the mice immunized with formalin-killed whole cell.

Complexation of Omeprazole with Meglumine and its Stability (오메프라졸과 메글루민의 복합체 형성과 안정성)

  • Lee, Gye-Ju;Kim, Sung-Wook;Do, Ki-Chan;Park, Chong-Bum;Hwang, Sung-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.4
    • /
    • pp.253-263
    • /
    • 1997
  • To investigate the interaction of omeprazole (OMP) and meglumine (MEG), a complex was prepared by freeze-drying method in ammoniacal aqueous medium at room temperature and subjected to IR, DSC, and 1H NMR analysis. In addition, the stability of the complex was tested by accelerated stability analysis, and the dissolution rate of both powder and enteric coated was determined pellet by paddle method. The results are as follows; i) IR, DSC, and $^{1}H$ NMR studies indicate the formation of inclusion complex between OMP and MEG probably by electrostatic forces as $[OMP]\;[MEGH]^+$ form in a stoichiometric ratio (1:1) of OMP : MEG. ii) The dissolution rate of enteric coated OMP-MEG complex pellet in simulated enteric fluid was 90.6% in 10 minutes, which may satisfy the requirement for the regulation of dissolution. iii) OMP-MEG complex were decomposed according to pseudo 1st order kinetics: while the decomposition of OMP showed a rate constant $(k_{25^{\circ}C})$ of $5.13{\times}10^{-4}{\cdot}\;day^{-1}$, a half-life$(t_{1/2})$ of 1,350 days, a shelf-life$(T_{90%})$ 205 days and an activation energy of 23.53 kcal/mole. OMP-MEG complex inhibited a rate $(k_{25})$ of $2.92{\times}10^{-4}{\cdot}\;day^{-1}$, a half-life$(t_{1/2})$ of 2,373 days, a shelf-life $(T_{90%})$ of 306 days and an activation energy of 20.18 kcal/mole. iv) OMP was stabilized markedly by the formation of OMP-MEG complex between OMP and MEG, and the humidity increased the stability of OMP-MEG complex by decreasing the decomposition rate$(k_{50^{\circ}C})$ from $1.27{\times}10^{-2}{\cdot}\;day^{-1}$ at 31% R.H. to $2.54{\times}10^{-2}{\cdot}\;day^{-1}$ at 90% R.H.

  • PDF

Physico-chemical properties of several omeprazole complexes

  • Rhee, Gye-Ju;Hwang, Sung-Joo;Kim, Eun-Hee;Kim, Sung wook
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.133-133
    • /
    • 1995
  • 각종 OMP 복합체들은 OMP에 비해 용해도가 2.7-12.0배 증가하였으며, 모두 10분 이내에 85% 이상이 용출되어 용출규정에 적합하였고 pH 및 습도에 따른 안정성 결과도 OMP에 비해 각종 OMP 복합체가 안정성이 증가되었다. OMP-cholestyramine 수지염의 경우 온도, 습도 및 수용액 중에서의 안정성 모두 OMP에 비하여 향상되었으며, 4$0^{\circ}C$, RH 75%의 가혹조건에서도 OMP pellet에 비해 OMP-cholestyramine 수지염 pellet이 안정성과 내산성이 매우 우수하였다.

  • PDF