Inhibitory Effects of (-)-Epigallocatechin gallate on Morphine-Induced Locomotor Sensitization and Conditioned Place Preference in Mice

  • Eun, Jae-Soon (College of Pharmacy, Woosuk University) ;
  • Kwon, Han-Na (College of Pharmacy, Chungbuk National University) ;
  • Hong, Jin-Tae (College of Pharmacy, Chungbuk National University) ;
  • Oh, Ki-Wan (College of Pharmacy, Chungbuk National University)
  • Published : 2006.09.25

Abstract

The inhibitory effects of (-)-epigallocatechin gallate (EGCG), a major compound of green tea, on the development of locomotor sensitization, conditioned place preference (CPP) and dopamine receptor supersensitivity induced by the repeated administration of morphine were investigated in mice. A single administration of morphine produces hyperlocomotion. The repeated administration of morphine develops sensitization, a progressive enhancement of locomotion, which is used as a model for studying the craving and drug-seeking behaviors characterizing addiction, and CPP, which is used as a model for studying drug reinforcement, respectively. EGCG inhibited morphine-induced hyperlocomotion, sensitization and CPP. In addition, EGCG inhibited the development of postsynaptic dopamine receptors supersensitivity, which may be an underlying common mechanism that mediates the morphine-induced dopaminergic behaviors such as sensitization and CPP. Apomorphine (a dopamine agonist)-induced climbing behaviors also were inhibited by a single direct administration of EGCG These results provide evidence that EGCG has anti-dopaminergic activity, as inhibiting the development of dopamine receptor supersensitivity and apomorphine-induced climbing behaviors. Therefore, it is suggested that green tea may be useful for the prevention and therapy of these adverse actions of morphine.

Keywords

References

  1. Beninger, R. J., and Miller, R., (1998). Dopamine D1-like receptors and reward-related incentive learning. Neurosci. Biobehav. Rev. 22, 335-345 https://doi.org/10.1016/S0149-7634(97)00019-5
  2. Bhargava, H. N., (1980). Cyclo (Leu-Gly) inhibits the development of morphine induced analgesic tolerance and dopamine receptor supersensitivity in rat. Life Sci. 27, 117-123 https://doi.org/10.1016/0024-3205(80)90452-X
  3. Blander, A., Hunt, T., Blair, R., and Amit, Z., (1984). Conditioned place preference: An evaluation of morphine's positive reinforcing properties. Psychopharmacol. 84, 124-127 https://doi.org/10.1007/BF00432040
  4. Bozarth, M. A., (1986). Neural basis of psychomotor stimulant and opiate reward: evidence suggesting the involvement of a common dopaminergic system. Behav. Brain Res. 22, 107-116 https://doi.org/10.1016/0166-4328(86)90032-X
  5. Chiu, C. T., Ma, T., and Ho, I. K., (2005). Attenuation of meth-amphetamine-induced behavioral sensitization in mice by systemic administration of naltrexone. Brain Res. 67, 100-109 https://doi.org/10.1016/j.brainresbull.2005.05.028
  6. Funada, M., Suzuki, T., and Misawa, M., (1994). The role of dopamine D1-receptors in morphine-induced hyperlocomotion in mice. Neurosci. Letter, 169, 1-4 https://doi.org/10.1016/0304-3940(94)90342-5
  7. Huong, N. T. T., Matsumoto, K., Yamasaki, K., Due, N. M., Nham, N. T., and Watanabe, H., (1997). Majonoside-R2, a major constituent of Vietnamese ginseng, attenuates opioid-induced antinociception. Pharmacol. Biochem. Behav. 57, 285-291 https://doi.org/10.1016/S0091-3057(96)00348-6
  8. Jeziorski, M., and White, F. J., (1995). Dopamine receptor antagonist prevents expression, but not development, of morphine sensitization. Eur. J. Pharmacol. 275, 235-244 https://doi.org/10.1016/0014-2999(94)00779-7
  9. Kalivas, P., and Nakamura, M., (1999). Neural systems for behavioral activation and reward. Curr. Opinion Neurobiol. 9, 223-227 https://doi.org/10.1016/S0959-4388(99)80031-2
  10. Kalivas, P. W., and Stewart, J. (1991). Dopamine transmission in the initiation and expression of drug-and stress-induced sensitization of motor activity. Brain Res. Rev. 16, 223-244 https://doi.org/10.1016/0165-0173(91)90007-U
  11. Kang, W. S., Lim, I. H., Yuk, D. Y., Chung, K. H., Park, J. B., Yoo, H. S., and Yun, Y. P., (1999). Antithrombic activities of green tea catechins and (- )-epigallocatechin gallate. Thrombosis Res. 96, 229-237 https://doi.org/10.1016/S0049-3848(99)00104-8
  12. Kim, H. S., Jang, C. G., and Lee, M. K., (1990). Antinarcotic effects of the standardized ginseng extract G115 on morphine. Planta Med. 56, 158-163 https://doi.org/10.1055/s-2006-960915
  13. Kim, H. S., Kang, J. G., and Oh, K. W., (1995). Inhibition by ginseng total saponin of the development of morphine tolerance and dopamine receptor supersensitivity in mice. Gen. Pharmacol. 26, 1071-1076 https://doi.org/10.1016/0306-3623(94)00267-Q
  14. Kim, H. S., Jang, C. G., Park, W. K., Oh, K. W., Rheu, H. M., Cho, D. H., and Oh, S., (1996a) Blockade by ginseng total saponin of methamphetamine-induced hyperactivity and conditioned place preference in mice. Gen. Pharmacol. 27, 199-204 https://doi.org/10.1016/0306-3623(95)02023-3
  15. Kim, H. S., Jang, C. G., Oh, K. W, Seong, Y. H., Rheu, H. M., Cho, D. H., and Kang, S. Y., (1996b). Effects of ginseng total saponin on cocaine-induced hyperactivity and conditioned place preference in mice. Pharmacol. Biochem. Behav. 53, 185-190 https://doi.org/10.1016/0091-3057(95)00170-0
  16. Kim, H. S., Hong, Y. T., and Jang, C. C., (1998). Effects of the ginsenosides Rgl and RbI on morphine-induced hyperactivity and reinforcement in mice. J. Pharm. Pharmacol. 50, 555-560 https://doi.org/10.1111/j.2042-7158.1998.tb06198.x
  17. Kim, H. S., Jang, C. G., Oh, K. W., Oh, S., Rheu, H. M., Rhee, G. S., Seong, Y. H., and Park, W. K., (1998). Effects of ginseng total saponin on morphine-induced hyperactivity and conditioned place preference in mice. J. Ethnopharmacol. 60, 33-42 https://doi.org/10.1016/S0378-8741(97)00131-1
  18. Kim, H. S., and Lim, H. K., (1999). Inhibitory effects of velvet antler water extract on morphine-induced conditioned place preference and DA receptor supersensitivity in mice. J. Ethnophannacol. 66, 25-31 https://doi.org/10.1016/S0378-8741(98)00195-0
  19. Koob, G.. F., and Bloom, F. E., (1988). Cellular and molecular mechanisms of drug dependence. Science 242, 715-723 https://doi.org/10.1126/science.2903550
  20. Kuribara, H., and Tadokoro, S., (1989). Reverse tolerance to ambulation-increasing effects of MAP and MOR in 6 mouse strains. Jpn. J. Pharmacol. 49, 197-203 https://doi.org/10.1254/jjp.49.197
  21. Kuribara, H., (1995). Modification of morphine sensitization by opioid and dopamine receptor antagonist: evaluation by studying ambulation in mice. Eur. J. Pharmacol. 275, 251-258 https://doi.org/10.1016/0014-2999(94)00787-8
  22. Lee, S. Y., Lee, J. W., Lee, H., Yoo, H. S., Yun, Y. P., Oh, K. W., Ha, T. Y., and Hong, J. T., (2005). Inhibitory effect of green tea extract on beta-amyloid-induced PCI2 cell death by inhibition of the activation of NF-kB and ERK/p38 MAP kinase pathway through antioxidant mechanisms. Mol. Brain Res. 140, 45-54 https://doi.org/10.1016/j.molbrainres.2005.07.009
  23. Leone, P., and Di Chiara, G.., (1987). Blockade of D-1 receptors by SCH23390 antagonizes morphine- and amphetamine-induced place preference conditioning. Eur. J. Pharmacol. 135, 251-254 https://doi.org/10.1016/0014-2999(87)90621-2
  24. Manzanendo, C., Aguilar, M. A., and Minarro, J., (1999). The effects of dopamine D2 and D3 antagonist on spontaneous motor activity and morphine-induced hyperactivity in male mice. Psychopharmacol. 143, 82-88 https://doi.org/10.1007/s002130050922
  25. Mucha, R. F., Van der Kooy, D., O'Shaughnessy, M., and Bucenieks, P., (1982). Drug reinforcement studied by the use of place conditioning in rat. Brain Res. 243, 91-105 https://doi.org/10.1016/0006-8993(82)91123-4
  26. Noguchi, M., Yokoyama, M., Watanabe, S., Uchiyama, M., Nakao, Y., Hara, K., and Iwasaka, T., (2006). Inhibitory effect of the tea polyphenol, (-)-epigallocatechin gallate, on growth of cervical adenocarcinoma cell lines. Cancer Letters 234, 135-142 https://doi.org/10.1016/j.canlet.2005.03.053
  27. Park, K., Vora, U., Darling, S. F., Kolta, M. G.., and Soliman, K. F. A., (2001). The role of inducible nitric oxide synthase in cocaineinduced locomotor sentitization. Physiol. Behav. 74, 441-447 https://doi.org/10.1016/S0031-9384(01)00588-1
  28. Pierce, R. C., and Kalivas, P. W., (1997). A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res. Rev. 25, 192-216 https://doi.org/10.1016/S0165-0173(97)00021-0
  29. Pollock, J., and Kornetsky. C., (1987). Evidence for the role of dopamine D I receptors in morphine induced stereotypic behavior. Neurosci. Letters 102, 291-296 https://doi.org/10.1016/0304-3940(89)90094-3
  30. Porrino, L. J., Domer, F. R., Crane, A. M., and Sokoloff, L., (1988). Selective alterantions in cerebral metabolism within the mesocorticolimbic dopaminergic system produced by acute cocaine administration of rats. Neuropsychopharmacol. 1, 109-118 https://doi.org/10.1016/0893-133X(88)90002-4
  31. Protais, P., Costentin, J., and Schwartz, J. C., (1976). Climbing behavior induced by apomorphine in mice: A simple test for the study of dopamine receptors in striatum. Psychopharmacol. 50, 1-6 https://doi.org/10.1007/BF00634146
  32. Robinson, T. E., and Becker, J. B., (1986). Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res. Rev. 11, 57-198
  33. Robinson, T. E., and Berridge, K. C., (2001). Incentive-sensitization and addiction mechanisms of action of addictive stimuli. Addiction 96, 103-114 https://doi.org/10.1046/j.1360-0443.2001.9611038.x
  34. Rompre, P., and Wise, R. A., (1989). Behavioral evidence for midbrain dopamine depolarization inactivation. Brain Res. 477, 152-156 https://doi.org/10.1016/0006-8993(89)91402-9
  35. Serrano, A., Aguilar, M. A., Manzanedo, C., Rodriguez-Arias, M., and Minarro, J., (2002). Effects of D1 and D2 antagonists on the sensitization to the motor effects of morphine in mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 26, 1263-1271 https://doi.org/10.1016/S0278-5846(02)00265-8
  36. Shippenberg, T. S., and Herz, A., (1987). Place preference conditioning reveals the involvement of D1-dopamine receptors in the motivational properties of mu- and kappa-opioid agonists. Brain Res. 436, 169-172 https://doi.org/10.1016/0006-8993(87)91571-X
  37. Trujillo, K. A., Kubota, K. S., and Warmoth, K. P., (2004). Continuous administration of opioids produces locomotor sensitization. Pharmacol. Biochem. Behav. 79, 661-669 https://doi.org/10.1016/j.pbb.2004.09.017
  38. Tzschentke, T. M., (1998). Measuring reward with the CPP paradigm: a comparative review of drug effects, recent progress and new issue. Prog. Neurobiol. 56, 613-672 https://doi.org/10.1016/S0301-0082(98)00060-4
  39. Wood, P. L., and Alter, C. A., (1998). Dopamine release in vivo from neostriata1 mesolimbic and mesocortica1 neurons utility of 3-methoxytryamine measurement. Pharmacol. Rev. 40, 163-187