References
- Beninger, R. J., and Miller, R., (1998). Dopamine D1-like receptors and reward-related incentive learning. Neurosci. Biobehav. Rev. 22, 335-345 https://doi.org/10.1016/S0149-7634(97)00019-5
- Bhargava, H. N., (1980). Cyclo (Leu-Gly) inhibits the development of morphine induced analgesic tolerance and dopamine receptor supersensitivity in rat. Life Sci. 27, 117-123 https://doi.org/10.1016/0024-3205(80)90452-X
- Blander, A., Hunt, T., Blair, R., and Amit, Z., (1984). Conditioned place preference: An evaluation of morphine's positive reinforcing properties. Psychopharmacol. 84, 124-127 https://doi.org/10.1007/BF00432040
- Bozarth, M. A., (1986). Neural basis of psychomotor stimulant and opiate reward: evidence suggesting the involvement of a common dopaminergic system. Behav. Brain Res. 22, 107-116 https://doi.org/10.1016/0166-4328(86)90032-X
- Chiu, C. T., Ma, T., and Ho, I. K., (2005). Attenuation of meth-amphetamine-induced behavioral sensitization in mice by systemic administration of naltrexone. Brain Res. 67, 100-109 https://doi.org/10.1016/j.brainresbull.2005.05.028
- Funada, M., Suzuki, T., and Misawa, M., (1994). The role of dopamine D1-receptors in morphine-induced hyperlocomotion in mice. Neurosci. Letter, 169, 1-4 https://doi.org/10.1016/0304-3940(94)90342-5
- Huong, N. T. T., Matsumoto, K., Yamasaki, K., Due, N. M., Nham, N. T., and Watanabe, H., (1997). Majonoside-R2, a major constituent of Vietnamese ginseng, attenuates opioid-induced antinociception. Pharmacol. Biochem. Behav. 57, 285-291 https://doi.org/10.1016/S0091-3057(96)00348-6
- Jeziorski, M., and White, F. J., (1995). Dopamine receptor antagonist prevents expression, but not development, of morphine sensitization. Eur. J. Pharmacol. 275, 235-244 https://doi.org/10.1016/0014-2999(94)00779-7
- Kalivas, P., and Nakamura, M., (1999). Neural systems for behavioral activation and reward. Curr. Opinion Neurobiol. 9, 223-227 https://doi.org/10.1016/S0959-4388(99)80031-2
- Kalivas, P. W., and Stewart, J. (1991). Dopamine transmission in the initiation and expression of drug-and stress-induced sensitization of motor activity. Brain Res. Rev. 16, 223-244 https://doi.org/10.1016/0165-0173(91)90007-U
- Kang, W. S., Lim, I. H., Yuk, D. Y., Chung, K. H., Park, J. B., Yoo, H. S., and Yun, Y. P., (1999). Antithrombic activities of green tea catechins and (- )-epigallocatechin gallate. Thrombosis Res. 96, 229-237 https://doi.org/10.1016/S0049-3848(99)00104-8
- Kim, H. S., Jang, C. G., and Lee, M. K., (1990). Antinarcotic effects of the standardized ginseng extract G115 on morphine. Planta Med. 56, 158-163 https://doi.org/10.1055/s-2006-960915
- Kim, H. S., Kang, J. G., and Oh, K. W., (1995). Inhibition by ginseng total saponin of the development of morphine tolerance and dopamine receptor supersensitivity in mice. Gen. Pharmacol. 26, 1071-1076 https://doi.org/10.1016/0306-3623(94)00267-Q
- Kim, H. S., Jang, C. G., Park, W. K., Oh, K. W., Rheu, H. M., Cho, D. H., and Oh, S., (1996a) Blockade by ginseng total saponin of methamphetamine-induced hyperactivity and conditioned place preference in mice. Gen. Pharmacol. 27, 199-204 https://doi.org/10.1016/0306-3623(95)02023-3
- Kim, H. S., Jang, C. G., Oh, K. W, Seong, Y. H., Rheu, H. M., Cho, D. H., and Kang, S. Y., (1996b). Effects of ginseng total saponin on cocaine-induced hyperactivity and conditioned place preference in mice. Pharmacol. Biochem. Behav. 53, 185-190 https://doi.org/10.1016/0091-3057(95)00170-0
- Kim, H. S., Hong, Y. T., and Jang, C. C., (1998). Effects of the ginsenosides Rgl and RbI on morphine-induced hyperactivity and reinforcement in mice. J. Pharm. Pharmacol. 50, 555-560 https://doi.org/10.1111/j.2042-7158.1998.tb06198.x
- Kim, H. S., Jang, C. G., Oh, K. W., Oh, S., Rheu, H. M., Rhee, G. S., Seong, Y. H., and Park, W. K., (1998). Effects of ginseng total saponin on morphine-induced hyperactivity and conditioned place preference in mice. J. Ethnopharmacol. 60, 33-42 https://doi.org/10.1016/S0378-8741(97)00131-1
- Kim, H. S., and Lim, H. K., (1999). Inhibitory effects of velvet antler water extract on morphine-induced conditioned place preference and DA receptor supersensitivity in mice. J. Ethnophannacol. 66, 25-31 https://doi.org/10.1016/S0378-8741(98)00195-0
- Koob, G.. F., and Bloom, F. E., (1988). Cellular and molecular mechanisms of drug dependence. Science 242, 715-723 https://doi.org/10.1126/science.2903550
- Kuribara, H., and Tadokoro, S., (1989). Reverse tolerance to ambulation-increasing effects of MAP and MOR in 6 mouse strains. Jpn. J. Pharmacol. 49, 197-203 https://doi.org/10.1254/jjp.49.197
- Kuribara, H., (1995). Modification of morphine sensitization by opioid and dopamine receptor antagonist: evaluation by studying ambulation in mice. Eur. J. Pharmacol. 275, 251-258 https://doi.org/10.1016/0014-2999(94)00787-8
- Lee, S. Y., Lee, J. W., Lee, H., Yoo, H. S., Yun, Y. P., Oh, K. W., Ha, T. Y., and Hong, J. T., (2005). Inhibitory effect of green tea extract on beta-amyloid-induced PCI2 cell death by inhibition of the activation of NF-kB and ERK/p38 MAP kinase pathway through antioxidant mechanisms. Mol. Brain Res. 140, 45-54 https://doi.org/10.1016/j.molbrainres.2005.07.009
- Leone, P., and Di Chiara, G.., (1987). Blockade of D-1 receptors by SCH23390 antagonizes morphine- and amphetamine-induced place preference conditioning. Eur. J. Pharmacol. 135, 251-254 https://doi.org/10.1016/0014-2999(87)90621-2
- Manzanendo, C., Aguilar, M. A., and Minarro, J., (1999). The effects of dopamine D2 and D3 antagonist on spontaneous motor activity and morphine-induced hyperactivity in male mice. Psychopharmacol. 143, 82-88 https://doi.org/10.1007/s002130050922
- Mucha, R. F., Van der Kooy, D., O'Shaughnessy, M., and Bucenieks, P., (1982). Drug reinforcement studied by the use of place conditioning in rat. Brain Res. 243, 91-105 https://doi.org/10.1016/0006-8993(82)91123-4
- Noguchi, M., Yokoyama, M., Watanabe, S., Uchiyama, M., Nakao, Y., Hara, K., and Iwasaka, T., (2006). Inhibitory effect of the tea polyphenol, (-)-epigallocatechin gallate, on growth of cervical adenocarcinoma cell lines. Cancer Letters 234, 135-142 https://doi.org/10.1016/j.canlet.2005.03.053
- Park, K., Vora, U., Darling, S. F., Kolta, M. G.., and Soliman, K. F. A., (2001). The role of inducible nitric oxide synthase in cocaineinduced locomotor sentitization. Physiol. Behav. 74, 441-447 https://doi.org/10.1016/S0031-9384(01)00588-1
- Pierce, R. C., and Kalivas, P. W., (1997). A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res. Rev. 25, 192-216 https://doi.org/10.1016/S0165-0173(97)00021-0
- Pollock, J., and Kornetsky. C., (1987). Evidence for the role of dopamine D I receptors in morphine induced stereotypic behavior. Neurosci. Letters 102, 291-296 https://doi.org/10.1016/0304-3940(89)90094-3
- Porrino, L. J., Domer, F. R., Crane, A. M., and Sokoloff, L., (1988). Selective alterantions in cerebral metabolism within the mesocorticolimbic dopaminergic system produced by acute cocaine administration of rats. Neuropsychopharmacol. 1, 109-118 https://doi.org/10.1016/0893-133X(88)90002-4
- Protais, P., Costentin, J., and Schwartz, J. C., (1976). Climbing behavior induced by apomorphine in mice: A simple test for the study of dopamine receptors in striatum. Psychopharmacol. 50, 1-6 https://doi.org/10.1007/BF00634146
- Robinson, T. E., and Becker, J. B., (1986). Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res. Rev. 11, 57-198
- Robinson, T. E., and Berridge, K. C., (2001). Incentive-sensitization and addiction mechanisms of action of addictive stimuli. Addiction 96, 103-114 https://doi.org/10.1046/j.1360-0443.2001.9611038.x
- Rompre, P., and Wise, R. A., (1989). Behavioral evidence for midbrain dopamine depolarization inactivation. Brain Res. 477, 152-156 https://doi.org/10.1016/0006-8993(89)91402-9
- Serrano, A., Aguilar, M. A., Manzanedo, C., Rodriguez-Arias, M., and Minarro, J., (2002). Effects of D1 and D2 antagonists on the sensitization to the motor effects of morphine in mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 26, 1263-1271 https://doi.org/10.1016/S0278-5846(02)00265-8
- Shippenberg, T. S., and Herz, A., (1987). Place preference conditioning reveals the involvement of D1-dopamine receptors in the motivational properties of mu- and kappa-opioid agonists. Brain Res. 436, 169-172 https://doi.org/10.1016/0006-8993(87)91571-X
- Trujillo, K. A., Kubota, K. S., and Warmoth, K. P., (2004). Continuous administration of opioids produces locomotor sensitization. Pharmacol. Biochem. Behav. 79, 661-669 https://doi.org/10.1016/j.pbb.2004.09.017
- Tzschentke, T. M., (1998). Measuring reward with the CPP paradigm: a comparative review of drug effects, recent progress and new issue. Prog. Neurobiol. 56, 613-672 https://doi.org/10.1016/S0301-0082(98)00060-4
- Wood, P. L., and Alter, C. A., (1998). Dopamine release in vivo from neostriata1 mesolimbic and mesocortica1 neurons utility of 3-methoxytryamine measurement. Pharmacol. Rev. 40, 163-187