DOI QR코드

DOI QR Code

Rapid Detection of Trace 1,4-Dichlorobenzene Using Laser Mass Spectrometry

  • Ding, Lei (Laboratory of Environmental Spectroscopy, Anhui Institute of Optics & Fine Mechanics, The Chinese Academy of Sciences) ;
  • Ma, Jing (Laboratory of Environmental Spectroscopy, Anhui Institute of Optics & Fine Mechanics, The Chinese Academy of Sciences) ;
  • Zheng, Haiyang (Laboratory of Environmental Spectroscopy, Anhui Institute of Optics & Fine Mechanics, The Chinese Academy of Sciences) ;
  • Fang, Li (Laboratory of Environmental Spectroscopy, Anhui Institute of Optics & Fine Mechanics, The Chinese Academy of Sciences) ;
  • Zhang, Weijun (Laboratory of Environmental Spectroscopy, Anhui Institute of Optics & Fine Mechanics, The Chinese Academy of Sciences) ;
  • Kim, Duk-Hyeon (Quantum Optics Laboratory, Korea Atomic Energy Research Institute) ;
  • Cha, Hyung-Ki (Quantum Optics Laboratory, Korea Atomic Energy Research Institute)
  • Published : 2006.09.20

Abstract

The 1+1 two-photon Resonant Enhanced Multiphoton Ionization (REMPI) spectra of 1,4-dichlorobenzene was obtained from 240 nm through to 250 nm on a laser mass spectrometer. Special care was taken to build up a heatable sample inlet system suitable for detecting a trace semi-volatile organic compound and reducing the memory effort on the inner wall of the inlet system. The detection limits of 1,4-dichlorobenzene in ppbV/V concentration range at certain wavelengths are presented.

Keywords

References

  1. Blumenstock, M.; Zimmermann, R.; Ketchup, A. Chemosphere. 2001, 42, 507 https://doi.org/10.1016/S0045-6535(00)00223-X
  2. Oberg, T.; Neuer-Etscheidt, K.; Nordsieck, H. et al. Organohalogen Compounds 2002, 59, 37
  3. Boesl, U. J. Mass Spectrom. 2000, 35, 289 https://doi.org/10.1002/(SICI)1096-9888(200003)35:3<289::AID-JMS960>3.0.CO;2-Y
  4. Guilhaus, M.; Mlynski, V.; Selby, D. Rapid Comm. Int. Mass Spectrometry 1997, 11, 951 https://doi.org/10.1002/(SICI)1097-0231(19970615)11:9<951::AID-RCM785>3.0.CO;2-H
  5. Rodgers, R. P.; Lazar, A. C.; Reilly, P. T. A. et al. Anal. Chem. 2000, 72, 5040 https://doi.org/10.1021/ac000513o
  6. Morrical, B. D.; Zenobi, R. Atmosphere Environment 2002, 36, 801 https://doi.org/10.1016/S1352-2310(01)00524-6
  7. Maguhn, J.; Karg, E.; Kettrup, A. et al. Environ. Sci. Technol. 2003, 37, 4761 https://doi.org/10.1021/es020227p
  8. Tembreull, R.; Sin, C. H.; Li, P. et al. Anal. Chem. 1985, 57, 1186 https://doi.org/10.1021/ac00284a006
  9. Sanda, W. D.; Moore, R. J. Phys. Chem. 1989, 93, 101 https://doi.org/10.1021/j100338a024
  10. Anno, T.; Matubara, I. J. Chem. Phys. 1955, 23, 796 https://doi.org/10.1063/1.1742125
  11. Heger, H. J.; Zimmermann, R.; Dorfner, R. et al. Anal. Chem. 1999, 71, 46 https://doi.org/10.1021/ac980611y

Cited by

  1. Current literature in mass spectrometry vol.42, pp.6, 2007, https://doi.org/10.1002/jms.1075