Emission Stability of Semiconductor Nanowires

반도체 나노와이어에서 전자방출 안정성

  • Yu, Se-Gi (Department of Physics, Hankook University of Foreign Studies) ;
  • Jeong, Tae-Won (Center for Electron Emission Source, Samsung Advanced Institute of Technology) ;
  • Lee, Sang-Hyun (Center for Electron Emission Source, Samsung Advanced Institute of Technology) ;
  • Heo, Jung-Na (Center for Electron Emission Source, Samsung Advanced Institute of Technology) ;
  • Lee, Jeong-Hee (Center for Electron Emission Source, Samsung Advanced Institute of Technology) ;
  • Lee, Cheol-Jin (Department of Electronics and Computer Engineering, Korea University) ;
  • Kim, Jin-Young (Department of Physics, Hankook University of Foreign Studies) ;
  • Lee, Hyung-Sook (Department of Physics, Hankook University of Foreign Studies) ;
  • Kuk, Yoon-Pil (Department of Physics, Hankook University of Foreign Studies) ;
  • Kim, J.M. (Center for Electron Emission Source, Samsung Advanced Institute of Technology)
  • 유세기 (한국외국어대학교, 전자물리학과) ;
  • 정태원 (삼성종합기술원, 전자방출원 연구단) ;
  • 이상현 (삼성종합기술원, 전자방출원 연구단) ;
  • 허정나 (삼성종합기술원, 전자방출원 연구단) ;
  • 이정희 (삼성종합기술원, 전자방출원 연구단) ;
  • 이철진 (고려대, 전자공학과) ;
  • 김진영 (한국외국어대학교, 전자물리학과) ;
  • 이형숙 (한국외국어대학교, 전자물리학과) ;
  • 국윤필 (한국외국어대학교, 전자물리학과) ;
  • 김종민 (삼성종합기술원, 전자방출원 연구단)
  • Published : 2006.09.01

Abstract

Field emission of GaN and GaP nanowires, synthesized by thermal chemical vapor deposition, and their emission stabilities under oxygen and argon environments were investigated. The field emission current of GaN nanowires was seriously deteriorated under oxygen environment, while that of GaP was not. Both wires did not show any noticeable change under argon environment. The existence of oxide outer shell layers in the GaP nanowires was proposed to be a main reason for this emission stability behavior. Field emission energy distributions of electrons from these nanowires revealed that field emission mechanism of the semiconductor nanowires were different from that of carbon nanotubes.

열 화학기상법으로 만든 GaN와 GaP 나노와이어에서 전계 방출과, 산소와 아르곤 분위기에서 안정성에 대해 조사하였다. GaN 나노와이어의 경우 산소 분위기에서 전계 방출이 급격하게 줄었으나, GaP에서는 그렇지 않았다. 두 나노와이어 모두 아르곤 분위기에서는 큰 변화가 없었다. GaP 나노와이어의 외부에 존재하는 산화물 층이 전자 방출 안정성에 크게 기여한 것으로 생각된다. 나노와이어에서 방출된 전자의 에너지 분포를 통해 반도체 나노와이어는 탄소 나노튜브와 그 전계 방출 메카니즘이 다름을 유추할 수 있었다.

Keywords

References

  1. S. Iijima, Nature 354, 56 (1991) https://doi.org/10.1038/354056a0
  2. J. M. Kim, W. B. Choi, N. S. Lee, and J. E. Jung, Diamond Relat. Mater. 9, 1184 (2000) https://doi.org/10.1016/S0925-9635(99)00266-6
  3. S. Yu, W. Yi, J. Lee, T. Jeong, S. Jin, N. Heo, J. H. Kang, Y. S. Choi, C. S. Lee, J.-B. Yoo, and J.M. Kim, Appl. Phys. Lett. 80, 4036 (2002) https://doi.org/10.1063/1.1481547
  4. S.-H. Jeong and K.-H. Lee, J. Kor. Phys. Soc. 45, L252 (2004)
  5. S. Yu, S. Jin, W. Yi, J. H. Kang, T. Jeong, Y. S. Choi, J. Lee, J. Heo, N. S. Lee, J.-B. Yoo, and J. M. Kim, Jpn. J. Appl. Phys. 40, 6088 (2001) https://doi.org/10.1143/JJAP.40.6088
  6. S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, and C. J. Lee, Chem. Phys. Lett. 367, 717 (2003) https://doi.org/10.1016/S0009-2614(02)01785-2
  7. S. C. Lyu, O. H. Cha, E. K. Suh, H. Ruh, H. J. Lee, and C. J. Lee, Chem. Phys. Lett. 367, 136 (2003) https://doi.org/10.1016/S0009-2614(02)01679-2
  8. W. Shi, Y. Zheng, N. Wang, C.-S. Lee, and S.T. Lee, Adv. Mater. 13, 591 (2001) https://doi.org/10.1002/1521-4095(200104)13:8<591::AID-ADMA591>3.0.CO;2-#
  9. A. M. Morales and C. M. Lieber, Science 279, 208 (1998) https://doi.org/10.1126/science.279.5348.208
  10. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, Nature 415, 617 (2002) https://doi.org/10.1038/415617a
  11. J. Chen, S. Z. Deng, N. S. Xu, S. Wang, X. Wen, S. Yang, C. Yang, J. Wang, and W. Ge, Appl. Phys. Lett. 80, 3620 (2002) https://doi.org/10.1063/1.1478149
  12. B.-K. Kim, J.-J. Kim, and J.-O. Lee, J. Kor. Phys. Soc. 46, 1262 (2005)
  13. J.-M. Bonard, H. Kind, T. St''ockli, and L. O. Nilssson, Sol. St. Electron. 45, 893 (2001) https://doi.org/10.1016/S0038-1101(00)00213-6
  14. J. R. Kim, H. M. So, J. W. Park, J. J. Kim, J. H. Kim, C. J. Lee, and S. C. Lyu, Appl. Phys. Lett. 80, 3548 (2002) https://doi.org/10.1063/1.1478158
  15. N. J. Watkins, G. W. Wicks, Y. Gao, Appl. Phys. Lett. 75, 2602 (1999) https://doi.org/10.1063/1.125091
  16. Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes, by S. Nakamura and S. F. Chichibu (Talyor & Francis, London, 2000)
  17. S. Strite and H. Morko , J. Vac. Sci. Technol. B 10, 1237 (1992) https://doi.org/10.1116/1.585897
  18. Y. Terada, H. Yoshida, T. Urushido, H. Miyake, and K. Hiramatsu, Jpn. J. Appl. Phys. 41, L1194 (2002) https://doi.org/10.1143/JJAP.41.L1194
  19. T.R. Taylor, K.R. Asmis, C. Xu, and D.M. Neumark, Chem. Phys. Lett, 297, 133 (1998) https://doi.org/10.1016/S0009-2614(98)01104-X
  20. K. A. Dean and B. R. Chalamala, Appl. Phys. Lett. 76, 375 (2000) https://doi.org/10.1063/1.125758
  21. S. C. Lim, Y. C. Choi, H. J. Jeong, Y. M. Shim, K. Y. An, D. J. Bae, and Y. H. Lee, Adv. Mat. 13, 1563 (2001) https://doi.org/10.1002/1521-4095(200110)13:20<1563::AID-ADMA1563>3.0.CO;2-H
  22. W. Yi, T. Jeong, S. Yu, J. Heo, C. Lee, J. Lee, W. Kim, J.-B. Yoo, and J. M. Kim, Adv. Mater. 14, 1464 (2002) https://doi.org/10.1002/1521-4095(20021016)14:20<1464::AID-ADMA1464>3.0.CO;2-4
  23. S. T. Purcell, P. Vincent, C. Journet, and V. T. Binh, Phys. Rev. Lett. 88, 105502 (2002) https://doi.org/10.1103/PhysRevLett.88.105502