DOI QR코드

DOI QR Code

Fabrication of a multi-functional one-chip sensor for detecting water depth, temperature, and conductivity

수위, 온도, 전도도 측정을 위한 다기능 One-Chip 센서의 제조

  • Song, Nak-Chun (Department of Electronics, Kyungpook National University) ;
  • Cho, Yong-Soo (Department of Electronics, Kyungpook National University) ;
  • Choi, Sie-Young (Department of Electronics, Kyungpook National University)
  • Published : 2006.01.31

Abstract

The multi-functional one-chip sensor has been fabricated to reduce output variation under various water environment. There were a temperature sensor, a piezoresistive type pressure sensor, and a electrode type conductivity sensor in the fabricated one-chip sensor. This sensor was measured water depth in the range of $0{\sim}180cm$, temperature in the range of $0{\sim}50^{\circ}C$, and salinity in the range of 0 $0wt%{\sim}5wt%$, respectively. Since the change of water depth in solution environment depends on various factors such as salinity, latitude, temperature, and atmospheric pressure, the water depth sensor is needed to be compensated. We tried to compensate the salinity and temperature dependence for the pressure in water by using lookup-table method.

Keywords

References

  1. 임공예, '수질환경 오염 분석방법', 화학과 공업의 진보, 제21권, 제5호, pp. 306-319, 1981
  2. 정용태, 심순섭, 이용환, '다변량분석법을 이용한 하천수질의 평가', 한국환경관리학회논문집, 제5권, 제3호, pp. 531-537, 1999
  3. T. M. Dauphinee, J. Ancsin, H. P. Klein, and M. J. Phillips, 'The electrical conductivity of weight dilued and concentrated standard seawater as a function of salinity and temperature', IEEE Journal of Oceanic Engineering, vol. 5, no. 1, pp. 28-40, 1980 https://doi.org/10.1109/JOE.1980.1145439
  4. A. Poisson, 'Conductivit/salinity/temperature relationship of diluted and concentrated standard seawater', IEEE Journal of Oceanic Engineering, vol. 5, no. 1, pp. 41-49, 1980 https://doi.org/10.1109/JOE.1980.1145442
  5. D. R. Topham and R. G. Perkin, 'CTD sensor characteristics and their matching for salinity calculations', IEEE Journal of Oceanic Engineering, vol. 13, no. 3, pp. 107-117, 1998 https://doi.org/10.1109/48.564
  6. 박종식, '환경오염 측정시스템의 개발', 경북대학교 센서기술연구소 과제 보고서, pp. 114-122, 1994
  7. Shanup and Reza Zoughi, 'Comparison of water and saltwater movement in mortar based', Instrumentation and Measurement, vol. 53 no. 4. pp. 1218-1222, 2004 https://doi.org/10.1109/TIM.2004.830741
  8. 손승현, 김우정, 최시영, '가스누출 감지용 실리콘 압저항형 절대압센서의 제조 및 온도 보상', 센서학회지, 제7권, 제3호 pp. 171-178, 1998
  9. 배혜진, 손승현, 최시영, '생체 in-vivo 측정을 위한 실리콘 압력센서의 제조', 센서학회지, 제10권, 제3호, pp. 148-155. 2001
  10. K. E. Peterson, 'Silicon as a mechanical material', IEEE Trans. on Electron Device, vol. 70, no. 5, pp. 420-456, 1982
  11. 이보나, 이영준, 정승민, 이문기, '집적화된 실리콘 압력센서의 제작', 대한전자공학회지, 제30권, pp. 22-29, 1993
  12. Y. Kanda, 'Graphical representation of the piezoresistance coefficients in silicon shear coefficient in plane', Japenese J. Appl. Phys., vol. 26, no. 7, pp. 1031-1033, 1987 https://doi.org/10.1143/JJAP.26.1031
  13. C. Herring, 'Transport properties of a many-valley semiconductor', Bell Syst. Tech. J., vol. 34, pp. 237-296, 1955 https://doi.org/10.1002/j.1538-7305.1955.tb01472.x
  14. 장재만, 이재우, 전기화학측정법, 자유아카데미, pp. 30-34, 1998
  15. Jacob fraden, Handbook of modern sensors: physics, designs, and applications, pp 483-464, 1996