Isolation of Sulfur Oxidizing Bacteria from Different Ecological Niches

다양한 생태계에서 분리한 황 산화 세균

  • Anandham, Rangasamy (Department of Agricultural Microbiology, Tamil nadu Agricultural University) ;
  • Sridar, Ragupathy (Department of Agricultural Microbiology, Tamil nadu Agricultural University) ;
  • Nalayini, Periyakaruppan (Division of Crop Production, Central Institute for Cotton Research, Regional Station, Indian Council Agricultural Research) ;
  • Madhaiyan, Munusamy (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Gandhi, Pandiyan Indira (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Choi, Kwan-Ho (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • ;
  • ;
  • ;
  • ;
  • ;
  • 최관호 (충북대학교 농업생명환경대학 농화학과) ;
  • 사동민 (충북대학교 농업생명환경대학 농화학과)
  • Received : 2005.07.02
  • Accepted : 2005.07.28
  • Published : 2005.08.30

Abstract

Nine chemolithoautotrophic and 12 chemolithoheterotrophic sulfur oxidizing bacteria were isolated using enrichment technique in modified Starkey's medium. All isolates reduced pH of the growth medium through oxidation of elementai sulfur to sulfuric acid. Isolates utilized the thiosulfate as energy source except LCH. None of the isolates grew anaerobically and utilization of glucose was found only in chemolithoheterotrophic isolates SGA6 and JIG. In vitro sulfate production from elemental sulfur was found maximum for chemoiithoautotroph LCH ($43.2mg\;100\;mL^{-1}$) and least for chemolithoheterotroph JIG ($10.04mg\;100\;mL^{-1}$). The above tests suggested that all isolates belong to the member of Thiobacillus. For field inoculation of Thiobacillus, clay based pellet formulation was developed with the cell load of $2.5{\times}10^7cfu\;g^{-1}$ of pellet. It is easy to handle by the farmers and more likely to lead to successful farming.

다양한 인도 토양에서 Starkey's 배지를 이용하여 9종류의 화학합성독립영양 및 12종류의 화학합성종속영양 황산화 세균을 분리하였다. 분리한 세균은 황을 황산으로 산화시키는 기능이 있으며 생육 중 배지의 산도를 감소시켰다. 분리한 황 산화 세균은 혐기 조건에서는 생육하지 못했다. 화학합성독립영양세균 SGA6 및 JIG 2종만이 포도당을 이용하는 능력이 있었으며, LCH 1종을 제외한 모든 분리세균은 thiosulfate를 에너지원으로 이용하였다. 분리한 세균 중 황 산화 능력이 가장 우수한 것은 화학합성독립영향세균인 LCH이었으며 화학합성종속영향세균인 JIG의 황 산화 능력이 가장 낮았다. 분리한 황 산화 세균을 이용하여 점토를 이용하여 입제형태로 만들었을 때 균의 밀도는 약 $2.5{\times}10^7cfu\;g^{-1}$ 이었다.

Keywords

References

  1. Beijerinck, M. W. 1904. Phenomenesde reduction proguits parIes microbes. Arch. Sci. Exactes et Nat., Hareelem, Ser. 2:9131-9157
  2. Biswas, B. C., and R. K. Tewatia. 1992. Sulphur management in rice based cropping system. Sulphur in Agriculture. 19:48-53
  3. Brown, H. D. 1923. Sulfofication in pure and wined cultures with special reference to sulfate production hydrogen ion concentration and nitrification. J. Arner. Soc. Agron. 15:350-382 https://doi.org/10.2134/agronj1923.00021962001500090002x
  4. Burton, J. C. 1982. Modem concept in legume production. p. 105-114. In P. H. Graham and S. C. Harris (ed.) Biological nitrogen fixation technology for tropical agriculture. CIAT, Cali, Columbia
  5. Cho, K. S., L. Zhang, M. Hirai, and M. Shoda. 1991. Removal characteristics of hydrogensulfide and methanethiol by Thiobacillus sp. Isolated from peat in biological deodorization. J. Ferment. Bioeng. 71:44-49 https://doi.org/10.1016/0922-338X(91)90302-W
  6. Doetsch, R. N. 1981. Determinative methods of light microscopy. p. 21-33. In P. Gerhardt et al. (ed.) Manual methods for general bacteriology. American Society for Microbiology, Washington D.C., USA
  7. Fisher, M. J., and M. J. T. Norman. 1970. Tests for phosphates from rum jungle, northern territory. Aus. J. Exp. Agric. Animal Hus. 10:592-598 https://doi.org/10.1071/EA9700592
  8. Friedrich, C. G., D. Rother, F. Bradischewsky, A. Quentmeier, and J. Fischer. 2001. Oxidation of reduced in organic sulfur compounds by bacteria: Emergence of common mechanism? Appl. Environ. Microbiol. 67:2873-2882 https://doi.org/10.1128/AEM.67.7.2873-2882.2001
  9. Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology (9th ed.) Williams and Wilkins, Philadelphia, PA, USA
  10. Ito, T., K. Sugita, and S. Okabe. 2004. Isolation, characterization, and in situ detection a novel chemolithotrophic sulfur oxidizing bacterium in waste water biofilms growing under microaerophilic conditions. Appl. Environ. Microbiol. 70:3122-3129 https://doi.org/10.1128/AEM.70.5.3122-3129.2004
  11. Izumikubo, I., T. Takeuchi, M. Furusawa, Y. Arikawa, and T. Kanagawa. 1995. A biosensor based on Thiobacillus thioparusfor measuring thiosulfate and methanethiol. Can. J. Microbiol. 41:366-371 https://doi.org/10.1139/m95-049
  12. Kai, T., T. Tskahashi, Y. Shirakawa, and Y. Kawabatta. 1990. Decrease in iron oxidizing activity of Thiobacillus [errooxidans adsorbed on activated carbon. Biotechnol. Bioeng. 36:1105-1109 https://doi.org/10.1002/bit.260361105
  13. Kertz, M. A., and K. Mirleau. 2004. The role of soil microbes in plant sulfur nutrition. J. Exp. Bot. 55:1-7 https://doi.org/10.1093/jxb/erh001
  14. Kuenen, L. G., L. A. Robertson, and O. H. Tuovinen. 1992. The genera Thiobacillus, Thiomicrospira and Thiosphera. In A. Ballows, H. G. Truper, M. Dworkin, W. Harder, and K. H., Schlefier (ed.) The Prokaryotes. vol. 3. Springer Verlag, New York, NY, USA
  15. Kulkami, J. H., D. J. Bagyaraj, and S. V. Hedge. 1980. Survival of cowpea Rhizobium in three peat samples. Curr. Res. 9:190
  16. Kumar Rao, J. V., and R. B. Patil. 1977. Effect of lime pelleting and yield of soybean grown in acid soil. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg. 132:628-630 https://doi.org/10.1016/S0044-4057(77)80044-0
  17. Masu, R. J. Y., J. K. on, and I. Suziki. 2001. Mechanism of oxidation of organic sulfur compounds by thiosulfate grown Thiobacillus thiooxidans. Can. J. Microbiol. 47:348-358 https://doi.org/10.1139/cjm-47-4-348
  18. Matin, A., and S. C. Rittenberg. 1971. Enzymes of carbohydrate metabolism in Thiobacillus species. J. Bacteriol. 107:179-186
  19. Myserson, A. S., and P. Kilne. 1983. The adsorbtion of Thiobacillus ferroxidans on solid particles. Biotechnol. Bioeng. 25:1669-1676 https://doi.org/10.1002/bit.260250621
  20. Pijnenborg, J. W. M., and T. A. Lie. 1990. Effect of lime pelleting on the nodulation of Lucerne (Medicago sativa L.) in acid soi!: A comparative study carried out in the field, in pots and in rhizons. Plant Soil 121:225-234 https://doi.org/10.1007/BF00012316
  21. Pryor, H. N., W. L. Lowther, H. J. Mclntyre, and C. W. Ronson. 1998. An inoculant Rhizobium strain for improved establishment and growth of hexaploid Caucasian clover (Trifolium ambigum). N. Z. J. Agric. Res. 41:179-189 https://doi.org/10.1080/00288233.1998.9513301
  22. Rajan, S. S. S. 1987. Phosphate rock and phosphate rock sulphur granules phosphate fertilizer and their dissolution in soil. Fert. Res. 11:43-60 https://doi.org/10.1007/BF01049563
  23. Rasal, P. H., P. M. Mangave, C. S. Thakare, and P. L. Pati!o 1994. Shelf life of Rhizobium inoculant as influenced by storage conditions. J. Microbiol. Biotechnol. 9:118-122
  24. Riley, N. G., F. J. Zhao, and S. P. McGrath. 2000. Availability of different forms of sulphur fertilizers to wheat and oil seed rape. Plant Soil 222:139-147 https://doi.org/10.1023/A:1004757503831
  25. Ryu, H. W., H. S. Moon, E. Y. Lee, K. S. Cho, and H. Choi. 2003. Leaching characteristics of heavy metals from sewage sludge by Acidithiobacillus thiooxidans. Met. J. Environ. Qual. 32:751-759 https://doi.org/10.2134/jeq2003.0751
  26. Saleem, M., and K. Rahmatullah. 1986. Studies on plant response to sulphur application in Pakistan soils. In Proc. international seminar on sulfur in agriculture soils. Dhakka, Bangladesh
  27. SAS Institute Inc. 2001. SAS user's guide. Version 8.2. SAS Institute Inc., Cary, North Carolina, USA
  28. Schnug, E., and S. Haneklaus. 1998. Diagnosis of sulphur nutrition. p. 1-38. In E. Schnug (ed.) Sulphur in agrosystems. Kluwer academic press, Dordrecht, The netherlands
  29. Shinde, D. B., P. L. Patil, B. R. Pati!o 1996. Potential use of sulphur oxidizing microorganism as soil inoculant. Crop Res. 11 :291-295
  30. Smith, R. S. 1992. Legume inoculant formulation and application. Can. J. Microbiol. 38:485-492 https://doi.org/10.1139/m92-080
  31. Sorokin, D. Y., L. P. Tourova, A. M. Lysenko, and J. G. Kuenen. 2001. Microbial thiocyanate utilization under highly alkaline conditions. Appl. Environ. Microbiol. 67:528-538 https://doi.org/10.1128/AEM.67.2.528-538.2001
  32. Starkey., R. L. 1925. Concerning the physiology of Thiobacillus thiooxidans, an autotrophic bacterium oxidizing sulfur under acid conditions. J. Bacteriol. 10:135-163
  33. Starkey, R. L. 1934. Cultivation of organisms concerned in the oxidation of thiosulfate. J. Bacteriol. 28:365-386
  34. Stefess, G. C., R. A. M. Torremans, and R. de Schrijver. 1996. Quantitative measurement of sulphur formation by steady state and transient state cultures of autotrophic Thiobacillus species. Appl. Microbiol. Biotechnol. 45:169-175 https://doi.org/10.1007/s002530050666
  35. Takano , B., M. Koshida, Y. Fujiwara, K. Sugimori , and S. Takayani. 1997. The influence of sulfur oxidizing bacteria on the budget of sulfate in Yugama crater lake, kusatsu shirane volcano. Japan Biochem. 38:227-253
  36. Tandon, H. L. S. 1995. Methods of analysis of soils, plants, water, and fertilizers. Fertilizer development and consulation organisation, NewDelhi, India
  37. Visser, J. M., G. C. Stefess, L. A. Robertson, and J. C. Kuenen. 1997. Thiobacillus sp. W5, the dominant autotroph oxidizing sulfide to sulfur in a reactor for aerobic treatment of sulfide wastes. Anotnie van Leeuwenhoek 72:127-134 https://doi.org/10.1023/A:1000252126252
  38. Vlasceanu, L., P. Radu, and B. R. Kinkle. 1997. Characterization of Thiobacillus thioparus LV 43 and its distribution in a chemoautotrophically based ground water ecosystem. Appl. Environ. Microbiol. 63:3123-3127
  39. Wainright, M. 1984. Sulphur oxidation in soils. Adv. Agron. 37:350-392
  40. Wood, T. A., K. R. Murry, and J. G. Burgess, 2001. Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilized on sand for the purpose of treating acid mine drainage. Appl. Microbiol. Biotechnol. 56:560-565 https://doi.org/10.1007/s002530100604
  41. Yadav, M. S., S. K. Sharma, and M. P. Rajora, 2000. Effect of pelleting material on seed germination and grassland productivity. Range Manag. Agroforest. 21:121-127
  42. Yasuhiro, K., A. Satoru, and Y. Noriaki. 1995. Growth kinetics of Thiobacillus thiooxidans on the surface of elemental sulfur. Appl. Environ. Microbiol. 61:3617-3622