References
- Beijerinck, M. W. 1904. Phenomenesde reduction proguits parIes microbes. Arch. Sci. Exactes et Nat., Hareelem, Ser. 2:9131-9157
- Biswas, B. C., and R. K. Tewatia. 1992. Sulphur management in rice based cropping system. Sulphur in Agriculture. 19:48-53
- Brown, H. D. 1923. Sulfofication in pure and wined cultures with special reference to sulfate production hydrogen ion concentration and nitrification. J. Arner. Soc. Agron. 15:350-382 https://doi.org/10.2134/agronj1923.00021962001500090002x
- Burton, J. C. 1982. Modem concept in legume production. p. 105-114. In P. H. Graham and S. C. Harris (ed.) Biological nitrogen fixation technology for tropical agriculture. CIAT, Cali, Columbia
- Cho, K. S., L. Zhang, M. Hirai, and M. Shoda. 1991. Removal characteristics of hydrogensulfide and methanethiol by Thiobacillus sp. Isolated from peat in biological deodorization. J. Ferment. Bioeng. 71:44-49 https://doi.org/10.1016/0922-338X(91)90302-W
- Doetsch, R. N. 1981. Determinative methods of light microscopy. p. 21-33. In P. Gerhardt et al. (ed.) Manual methods for general bacteriology. American Society for Microbiology, Washington D.C., USA
- Fisher, M. J., and M. J. T. Norman. 1970. Tests for phosphates from rum jungle, northern territory. Aus. J. Exp. Agric. Animal Hus. 10:592-598 https://doi.org/10.1071/EA9700592
- Friedrich, C. G., D. Rother, F. Bradischewsky, A. Quentmeier, and J. Fischer. 2001. Oxidation of reduced in organic sulfur compounds by bacteria: Emergence of common mechanism? Appl. Environ. Microbiol. 67:2873-2882 https://doi.org/10.1128/AEM.67.7.2873-2882.2001
- Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology (9th ed.) Williams and Wilkins, Philadelphia, PA, USA
- Ito, T., K. Sugita, and S. Okabe. 2004. Isolation, characterization, and in situ detection a novel chemolithotrophic sulfur oxidizing bacterium in waste water biofilms growing under microaerophilic conditions. Appl. Environ. Microbiol. 70:3122-3129 https://doi.org/10.1128/AEM.70.5.3122-3129.2004
- Izumikubo, I., T. Takeuchi, M. Furusawa, Y. Arikawa, and T. Kanagawa. 1995. A biosensor based on Thiobacillus thioparusfor measuring thiosulfate and methanethiol. Can. J. Microbiol. 41:366-371 https://doi.org/10.1139/m95-049
- Kai, T., T. Tskahashi, Y. Shirakawa, and Y. Kawabatta. 1990. Decrease in iron oxidizing activity of Thiobacillus [errooxidans adsorbed on activated carbon. Biotechnol. Bioeng. 36:1105-1109 https://doi.org/10.1002/bit.260361105
- Kertz, M. A., and K. Mirleau. 2004. The role of soil microbes in plant sulfur nutrition. J. Exp. Bot. 55:1-7 https://doi.org/10.1093/jxb/erh001
- Kuenen, L. G., L. A. Robertson, and O. H. Tuovinen. 1992. The genera Thiobacillus, Thiomicrospira and Thiosphera. In A. Ballows, H. G. Truper, M. Dworkin, W. Harder, and K. H., Schlefier (ed.) The Prokaryotes. vol. 3. Springer Verlag, New York, NY, USA
- Kulkami, J. H., D. J. Bagyaraj, and S. V. Hedge. 1980. Survival of cowpea Rhizobium in three peat samples. Curr. Res. 9:190
- Kumar Rao, J. V., and R. B. Patil. 1977. Effect of lime pelleting and yield of soybean grown in acid soil. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg. 132:628-630 https://doi.org/10.1016/S0044-4057(77)80044-0
- Masu, R. J. Y., J. K. on, and I. Suziki. 2001. Mechanism of oxidation of organic sulfur compounds by thiosulfate grown Thiobacillus thiooxidans. Can. J. Microbiol. 47:348-358 https://doi.org/10.1139/cjm-47-4-348
- Matin, A., and S. C. Rittenberg. 1971. Enzymes of carbohydrate metabolism in Thiobacillus species. J. Bacteriol. 107:179-186
- Myserson, A. S., and P. Kilne. 1983. The adsorbtion of Thiobacillus ferroxidans on solid particles. Biotechnol. Bioeng. 25:1669-1676 https://doi.org/10.1002/bit.260250621
- Pijnenborg, J. W. M., and T. A. Lie. 1990. Effect of lime pelleting on the nodulation of Lucerne (Medicago sativa L.) in acid soi!: A comparative study carried out in the field, in pots and in rhizons. Plant Soil 121:225-234 https://doi.org/10.1007/BF00012316
- Pryor, H. N., W. L. Lowther, H. J. Mclntyre, and C. W. Ronson. 1998. An inoculant Rhizobium strain for improved establishment and growth of hexaploid Caucasian clover (Trifolium ambigum). N. Z. J. Agric. Res. 41:179-189 https://doi.org/10.1080/00288233.1998.9513301
- Rajan, S. S. S. 1987. Phosphate rock and phosphate rock sulphur granules phosphate fertilizer and their dissolution in soil. Fert. Res. 11:43-60 https://doi.org/10.1007/BF01049563
- Rasal, P. H., P. M. Mangave, C. S. Thakare, and P. L. Pati!o 1994. Shelf life of Rhizobium inoculant as influenced by storage conditions. J. Microbiol. Biotechnol. 9:118-122
- Riley, N. G., F. J. Zhao, and S. P. McGrath. 2000. Availability of different forms of sulphur fertilizers to wheat and oil seed rape. Plant Soil 222:139-147 https://doi.org/10.1023/A:1004757503831
- Ryu, H. W., H. S. Moon, E. Y. Lee, K. S. Cho, and H. Choi. 2003. Leaching characteristics of heavy metals from sewage sludge by Acidithiobacillus thiooxidans. Met. J. Environ. Qual. 32:751-759 https://doi.org/10.2134/jeq2003.0751
- Saleem, M., and K. Rahmatullah. 1986. Studies on plant response to sulphur application in Pakistan soils. In Proc. international seminar on sulfur in agriculture soils. Dhakka, Bangladesh
- SAS Institute Inc. 2001. SAS user's guide. Version 8.2. SAS Institute Inc., Cary, North Carolina, USA
- Schnug, E., and S. Haneklaus. 1998. Diagnosis of sulphur nutrition. p. 1-38. In E. Schnug (ed.) Sulphur in agrosystems. Kluwer academic press, Dordrecht, The netherlands
- Shinde, D. B., P. L. Patil, B. R. Pati!o 1996. Potential use of sulphur oxidizing microorganism as soil inoculant. Crop Res. 11 :291-295
- Smith, R. S. 1992. Legume inoculant formulation and application. Can. J. Microbiol. 38:485-492 https://doi.org/10.1139/m92-080
- Sorokin, D. Y., L. P. Tourova, A. M. Lysenko, and J. G. Kuenen. 2001. Microbial thiocyanate utilization under highly alkaline conditions. Appl. Environ. Microbiol. 67:528-538 https://doi.org/10.1128/AEM.67.2.528-538.2001
- Starkey., R. L. 1925. Concerning the physiology of Thiobacillus thiooxidans, an autotrophic bacterium oxidizing sulfur under acid conditions. J. Bacteriol. 10:135-163
- Starkey, R. L. 1934. Cultivation of organisms concerned in the oxidation of thiosulfate. J. Bacteriol. 28:365-386
- Stefess, G. C., R. A. M. Torremans, and R. de Schrijver. 1996. Quantitative measurement of sulphur formation by steady state and transient state cultures of autotrophic Thiobacillus species. Appl. Microbiol. Biotechnol. 45:169-175 https://doi.org/10.1007/s002530050666
- Takano , B., M. Koshida, Y. Fujiwara, K. Sugimori , and S. Takayani. 1997. The influence of sulfur oxidizing bacteria on the budget of sulfate in Yugama crater lake, kusatsu shirane volcano. Japan Biochem. 38:227-253
- Tandon, H. L. S. 1995. Methods of analysis of soils, plants, water, and fertilizers. Fertilizer development and consulation organisation, NewDelhi, India
- Visser, J. M., G. C. Stefess, L. A. Robertson, and J. C. Kuenen. 1997. Thiobacillus sp. W5, the dominant autotroph oxidizing sulfide to sulfur in a reactor for aerobic treatment of sulfide wastes. Anotnie van Leeuwenhoek 72:127-134 https://doi.org/10.1023/A:1000252126252
- Vlasceanu, L., P. Radu, and B. R. Kinkle. 1997. Characterization of Thiobacillus thioparus LV 43 and its distribution in a chemoautotrophically based ground water ecosystem. Appl. Environ. Microbiol. 63:3123-3127
- Wainright, M. 1984. Sulphur oxidation in soils. Adv. Agron. 37:350-392
- Wood, T. A., K. R. Murry, and J. G. Burgess, 2001. Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilized on sand for the purpose of treating acid mine drainage. Appl. Microbiol. Biotechnol. 56:560-565 https://doi.org/10.1007/s002530100604
- Yadav, M. S., S. K. Sharma, and M. P. Rajora, 2000. Effect of pelleting material on seed germination and grassland productivity. Range Manag. Agroforest. 21:121-127
- Yasuhiro, K., A. Satoru, and Y. Noriaki. 1995. Growth kinetics of Thiobacillus thiooxidans on the surface of elemental sulfur. Appl. Environ. Microbiol. 61:3617-3622