Browse > Article

Isolation of Sulfur Oxidizing Bacteria from Different Ecological Niches  

Anandham, Rangasamy (Department of Agricultural Microbiology, Tamil nadu Agricultural University)
Sridar, Ragupathy (Department of Agricultural Microbiology, Tamil nadu Agricultural University)
Nalayini, Periyakaruppan (Division of Crop Production, Central Institute for Cotton Research, Regional Station, Indian Council Agricultural Research)
Madhaiyan, Munusamy (Department of Agricultural Chemistry, Chungbuk National University)
Gandhi, Pandiyan Indira (Department of Agricultural Chemistry, Chungbuk National University)
Choi, Kwan-Ho (Department of Agricultural Chemistry, Chungbuk National University)
Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.38, no.4, 2005 , pp. 180-187 More about this Journal
Abstract
Nine chemolithoautotrophic and 12 chemolithoheterotrophic sulfur oxidizing bacteria were isolated using enrichment technique in modified Starkey's medium. All isolates reduced pH of the growth medium through oxidation of elementai sulfur to sulfuric acid. Isolates utilized the thiosulfate as energy source except LCH. None of the isolates grew anaerobically and utilization of glucose was found only in chemolithoheterotrophic isolates SGA6 and JIG. In vitro sulfate production from elemental sulfur was found maximum for chemoiithoautotroph LCH ($43.2mg\;100\;mL^{-1}$) and least for chemolithoheterotroph JIG ($10.04mg\;100\;mL^{-1}$). The above tests suggested that all isolates belong to the member of Thiobacillus. For field inoculation of Thiobacillus, clay based pellet formulation was developed with the cell load of $2.5{\times}10^7cfu\;g^{-1}$ of pellet. It is easy to handle by the farmers and more likely to lead to successful farming.
Keywords
Sulfur oxidizers; Sulfate; Thiobacillus; Pellets;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Fisher, M. J., and M. J. T. Norman. 1970. Tests for phosphates from rum jungle, northern territory. Aus. J. Exp. Agric. Animal Hus. 10:592-598   DOI
2 Pijnenborg, J. W. M., and T. A. Lie. 1990. Effect of lime pelleting on the nodulation of Lucerne (Medicago sativa L.) in acid soi!: A comparative study carried out in the field, in pots and in rhizons. Plant Soil 121:225-234   DOI
3 Kuenen, L. G., L. A. Robertson, and O. H. Tuovinen. 1992. The genera Thiobacillus, Thiomicrospira and Thiosphera. In A. Ballows, H. G. Truper, M. Dworkin, W. Harder, and K. H., Schlefier (ed.) The Prokaryotes. vol. 3. Springer Verlag, New York, NY, USA
4 Kumar Rao, J. V., and R. B. Patil. 1977. Effect of lime pelleting and yield of soybean grown in acid soil. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg. 132:628-630   DOI   ScienceOn
5 Rajan, S. S. S. 1987. Phosphate rock and phosphate rock sulphur granules phosphate fertilizer and their dissolution in soil. Fert. Res. 11:43-60   DOI
6 Rasal, P. H., P. M. Mangave, C. S. Thakare, and P. L. Pati!o 1994. Shelf life of Rhizobium inoculant as influenced by storage conditions. J. Microbiol. Biotechnol. 9:118-122
7 Saleem, M., and K. Rahmatullah. 1986. Studies on plant response to sulphur application in Pakistan soils. In Proc. international seminar on sulfur in agriculture soils. Dhakka, Bangladesh
8 Shinde, D. B., P. L. Patil, B. R. Pati!o 1996. Potential use of sulphur oxidizing microorganism as soil inoculant. Crop Res. 11 :291-295
9 Sorokin, D. Y., L. P. Tourova, A. M. Lysenko, and J. G. Kuenen. 2001. Microbial thiocyanate utilization under highly alkaline conditions. Appl. Environ. Microbiol. 67:528-538   DOI   ScienceOn
10 Starkey., R. L. 1925. Concerning the physiology of Thiobacillus thiooxidans, an autotrophic bacterium oxidizing sulfur under acid conditions. J. Bacteriol. 10:135-163
11 Stefess, G. C., R. A. M. Torremans, and R. de Schrijver. 1996. Quantitative measurement of sulphur formation by steady state and transient state cultures of autotrophic Thiobacillus species. Appl. Microbiol. Biotechnol. 45:169-175   DOI
12 Myserson, A. S., and P. Kilne. 1983. The adsorbtion of Thiobacillus ferroxidans on solid particles. Biotechnol. Bioeng. 25:1669-1676   DOI   ScienceOn
13 Visser, J. M., G. C. Stefess, L. A. Robertson, and J. C. Kuenen. 1997. Thiobacillus sp. W5, the dominant autotroph oxidizing sulfide to sulfur in a reactor for aerobic treatment of sulfide wastes. Anotnie van Leeuwenhoek 72:127-134   DOI   ScienceOn
14 Vlasceanu, L., P. Radu, and B. R. Kinkle. 1997. Characterization of Thiobacillus thioparus LV 43 and its distribution in a chemoautotrophically based ground water ecosystem. Appl. Environ. Microbiol. 63:3123-3127
15 Yasuhiro, K., A. Satoru, and Y. Noriaki. 1995. Growth kinetics of Thiobacillus thiooxidans on the surface of elemental sulfur. Appl. Environ. Microbiol. 61:3617-3622
16 Biswas, B. C., and R. K. Tewatia. 1992. Sulphur management in rice based cropping system. Sulphur in Agriculture. 19:48-53
17 Burton, J. C. 1982. Modem concept in legume production. p. 105-114. In P. H. Graham and S. C. Harris (ed.) Biological nitrogen fixation technology for tropical agriculture. CIAT, Cali, Columbia
18 Friedrich, C. G., D. Rother, F. Bradischewsky, A. Quentmeier, and J. Fischer. 2001. Oxidation of reduced in organic sulfur compounds by bacteria: Emergence of common mechanism? Appl. Environ. Microbiol. 67:2873-2882   DOI   ScienceOn
19 Izumikubo, I., T. Takeuchi, M. Furusawa, Y. Arikawa, and T. Kanagawa. 1995. A biosensor based on Thiobacillus thioparusfor measuring thiosulfate and methanethiol. Can. J. Microbiol. 41:366-371   DOI   ScienceOn
20 Takano , B., M. Koshida, Y. Fujiwara, K. Sugimori , and S. Takayani. 1997. The influence of sulfur oxidizing bacteria on the budget of sulfate in Yugama crater lake, kusatsu shirane volcano. Japan Biochem. 38:227-253
21 Schnug, E., and S. Haneklaus. 1998. Diagnosis of sulphur nutrition. p. 1-38. In E. Schnug (ed.) Sulphur in agrosystems. Kluwer academic press, Dordrecht, The netherlands
22 Cho, K. S., L. Zhang, M. Hirai, and M. Shoda. 1991. Removal characteristics of hydrogensulfide and methanethiol by Thiobacillus sp. Isolated from peat in biological deodorization. J. Ferment. Bioeng. 71:44-49   DOI   ScienceOn
23 Smith, R. S. 1992. Legume inoculant formulation and application. Can. J. Microbiol. 38:485-492   DOI
24 Masu, R. J. Y., J. K. on, and I. Suziki. 2001. Mechanism of oxidation of organic sulfur compounds by thiosulfate grown Thiobacillus thiooxidans. Can. J. Microbiol. 47:348-358   DOI   ScienceOn
25 Ryu, H. W., H. S. Moon, E. Y. Lee, K. S. Cho, and H. Choi. 2003. Leaching characteristics of heavy metals from sewage sludge by Acidithiobacillus thiooxidans. Met. J. Environ. Qual. 32:751-759   DOI   ScienceOn
26 Wainright, M. 1984. Sulphur oxidation in soils. Adv. Agron. 37:350-392
27 Beijerinck, M. W. 1904. Phenomenesde reduction proguits parIes microbes. Arch. Sci. Exactes et Nat., Hareelem, Ser. 2:9131-9157
28 Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology (9th ed.) Williams and Wilkins, Philadelphia, PA, USA
29 Starkey, R. L. 1934. Cultivation of organisms concerned in the oxidation of thiosulfate. J. Bacteriol. 28:365-386
30 Doetsch, R. N. 1981. Determinative methods of light microscopy. p. 21-33. In P. Gerhardt et al. (ed.) Manual methods for general bacteriology. American Society for Microbiology, Washington D.C., USA
31 Brown, H. D. 1923. Sulfofication in pure and wined cultures with special reference to sulfate production hydrogen ion concentration and nitrification. J. Arner. Soc. Agron. 15:350-382   DOI
32 Riley, N. G., F. J. Zhao, and S. P. McGrath. 2000. Availability of different forms of sulphur fertilizers to wheat and oil seed rape. Plant Soil 222:139-147   DOI
33 Tandon, H. L. S. 1995. Methods of analysis of soils, plants, water, and fertilizers. Fertilizer development and consulation organisation, NewDelhi, India
34 Matin, A., and S. C. Rittenberg. 1971. Enzymes of carbohydrate metabolism in Thiobacillus species. J. Bacteriol. 107:179-186
35 Ito, T., K. Sugita, and S. Okabe. 2004. Isolation, characterization, and in situ detection a novel chemolithotrophic sulfur oxidizing bacterium in waste water biofilms growing under microaerophilic conditions. Appl. Environ. Microbiol. 70:3122-3129   DOI   ScienceOn
36 Kai, T., T. Tskahashi, Y. Shirakawa, and Y. Kawabatta. 1990. Decrease in iron oxidizing activity of Thiobacillus [errooxidans adsorbed on activated carbon. Biotechnol. Bioeng. 36:1105-1109   DOI   PUBMED
37 Pryor, H. N., W. L. Lowther, H. J. Mclntyre, and C. W. Ronson. 1998. An inoculant Rhizobium strain for improved establishment and growth of hexaploid Caucasian clover (Trifolium ambigum). N. Z. J. Agric. Res. 41:179-189   DOI   ScienceOn
38 Kertz, M. A., and K. Mirleau. 2004. The role of soil microbes in plant sulfur nutrition. J. Exp. Bot. 55:1-7   DOI   ScienceOn
39 SAS Institute Inc. 2001. SAS user's guide. Version 8.2. SAS Institute Inc., Cary, North Carolina, USA
40 Wood, T. A., K. R. Murry, and J. G. Burgess, 2001. Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilized on sand for the purpose of treating acid mine drainage. Appl. Microbiol. Biotechnol. 56:560-565   DOI   ScienceOn
41 Kulkami, J. H., D. J. Bagyaraj, and S. V. Hedge. 1980. Survival of cowpea Rhizobium in three peat samples. Curr. Res. 9:190
42 Yadav, M. S., S. K. Sharma, and M. P. Rajora, 2000. Effect of pelleting material on seed germination and grassland productivity. Range Manag. Agroforest. 21:121-127