Effect of Phosphate Bio fertilizer Produced by Enterobacter intermedium on Rhizosphere Soil Properties and Lettuce Growth

Enterobacter intermedium으로 제조된 인산생물비료가 토양 특성 및 상추의 생육에 미치는 영향

  • Park, Bum-Ki (R&D Center Namhae Chemical Corp) ;
  • Na, Jung-Heang (Division of Applied Bioscience and Biotechnology, Institute of Agricultural Science and Technology, APSRC, Chonnam National University) ;
  • Hwang-Bo, Hoon (Division of Applied Bioscience and Biotechnology, Institute of Agricultural Science and Technology, APSRC, Chonnam National University) ;
  • Lee, In-Jung (Division of Plant Bioscience, Kyungpook National University) ;
  • Kim, Kil-Yong (Division of Applied Bioscience and Biotechnology, Institute of Agricultural Science and Technology, APSRC, Chonnam National University) ;
  • Kim, Yong-Woong (Division of Applied Bioscience and Biotechnology, Institute of agricultural Science and Technology, Chonnam National University)
  • 박범기 (남해화학 R&D센터) ;
  • 나정행 (전남대학교 응용생물공학부) ;
  • 황보훈 (전남대학교 응용생물공학부) ;
  • 이인중 (경북대학교 식물생명과학부) ;
  • 김길용 (전남대학교 응용생물공학부) ;
  • 김용웅 (전남대학교 응용생물공학부)
  • Received : 2004.09.23
  • Accepted : 2004.10.07
  • Published : 2005.02.28

Abstract

Enterobacter intermedium oxidizes glucose to gluconic acid and sequentially converts gluconic acid to 2-ketogluconic acid (2-KGA) under aerobic condition. Shaking incubation of E. intermedium in a broth medium containing 22.5 g glucose, 8.2 g gluconic acid and 40 g rock phosphate per liter resulted in $1028mg\;L^{-1}$ soluble phosphate. The culture broth was used as phosphate bio-fertilizer (PBF) in this experiment. To evaluate PBF produced by E. intermedium on lettuce growth, five treatments (PBF1/3, PBF2/3, PBF3/3, BP, and MF) were used. In MF and BP treatments, $P_2O_5$ 5.9 kg of mineral fertilizer per 10a was added, while in PBF1/3, PBF2/3, and PBF3/3 treatments, culture broth containing one third, two third, and same amount of soluble $P_2O_5$ 5.9 kg per 10a was applied, respectively. At 20, 35, and 50 days after transplanting of lettuce, plant growth components, biomass, enzyme activities and soil chemical properties were analyzed. Dehydrogenase activity and available phosphate concentration of rhizosphere in phosphate bio fertilizer treatments (PBF1/3, PBF2/3, PBF3/3) were generally higher compared to MF and BP treatments. Soil biomass in PBF3/3 treatment was significantly higher than MF and BP treatments at early growth stage. However, there was no significant difference among all treatments with time. Plant fresh weights in PBF1/3, PBF2/3, and MF treatments were better than those in BP and PBF3/3 treatments. However, in PBF2/3 treatment the highest fresh weight was discovered where alkaline phosphatase activity was generally higher than other treatments at 35 and 50 days. Enhancement of lettuce growth at 35 and 50 days in PBF2/3 treatment was associated with greater phosphate uptake in lettuce tissue. As regarding all results, PBF showed better lettuce growth compared to mineral phosphate fertilizer where PBF2/3 treatment resulted in increase of lettuce fresh weight by 23% and phosphate uptake by 50%.

Enterobacter intermedium은 호기조건에서 glucose를 gluconic acid로 이를 다시 2-ketogluconic acid로 산화시킨다. 리터당 22.5 g의 glucose와 8.3 g gluconic acld, 그리고 40 g 인광석을 포함한 배지에서 배양 10일 후 $1028mg\;L^{-1}$ 의 수용성 인산이 얻어졌으며, 이 배양액을 인산생물비료로 사용하였다. E. intermedium에 의해 인광석이 용해된 인산생물비료를 평가하기 위하여 다섯 가지 처리구가 사용되었다 (PBF1/3, PBF2/3, PBF3/3, BP 그리고 MF). MF와 BP처리구에서는 인산비료가 10a당 $5.9kg\;P_2O_5$ 기준으로 시용되었으나, PBF1/3, PBF2/3 그리고 PBF3/3처리구는 10a당 $5.9kg\;P_2O_5$ 에 해당하는 인산량의 1/3, 2/3, 3/3에 해당하는 인광석 용해 배양액이 각각 시용되었다. 상추 정식 후 20일, 35일 그리고 50일 후에 성장요소, biomass, 토양효소 활성 그리고 토양 화학성이 분석되었다. 근권의 dehydrogenase 활성과 유효인산농도가 인산생물비료 (PBF1/3, PBF2/3 그리고 PBF3/3)처리구에서 BP 및 MF처리구에 비해 일반적으로 높았다. 토양 미생물 blomass는 생육초기에 BP 및 MF처리구에 비해 PBF3/3처리구에서 매우 높았다. 모든 결과를 고려할 때, PBF2/3처리구에서는 MF처리구와 비교하여 생체중이 23% 증가하고 인산흡수가 50% 증가하였다. 즉, 인산생물비료는 무기인산비료의 대용으로 사용 가능성을 나타내었다.

Keywords

References

  1. Altomare, C., A. Norvell A., T. Bjorkman, and G. E. Harman. 1999. Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl. Environ. Microbiol. 65:2926-2933
  2. Asea, P. E. A., R. M. N. Kucey, and J. W. B. Stewart. 1987. Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol. Biochem. 13:459-464
  3. Barea, J. M., E. Navarro, and E. Montoya. 1976. Production of growth regulators by rhizosphere phosphate solubilizing bacteria. J. Appl. Bact. 40: 129-134 https://doi.org/10.1111/j.1365-2672.1976.tb04161.x
  4. Baya, A. M., R. S. Boethling, and A. Ramos Connenzana. 1981. Vitamin production in relation to phosphate solubilization by soil bacteria. Soil Biol. Biochem. 13:527-531 https://doi.org/10.1016/0038-0717(81)90044-4
  5. Brady, N. C., and R. R. Weil. 1999. The nature and properties of soils. 12th ed. Prentice Hall. Upper Saddle River, NJ. USA
  6. Bremner, J. M., and C. S. Mulvaney. 1982. Nitrogen Total. p. 595-641 In A. L. Page et al. (ed.) Methods of soil analysis. Part 2. Chemical and microbiological properties. Soil Science Society of America, Madison, WI, USA
  7. Datta, M., S. Banik, and R. K. Gupta. 1982. Studies on the efficacy of a phytohormone producing phosphate solubilizing Bacillus firmus in augmenting paddy yield in acid soils of Nagaland. Plant Soil 69:65-373
  8. El Gibaly, M. H., F. M. El Reweiny, M. Abdel-Nasser, and ThA. El Dahtory. 1977. Studies on phosphate solubilizing bacteria in soil and rhizosphere of different plants. Zbl. Bakt. II. Abt. 132:233-250
  9. Elliott. L. F., and J. M. Lynch. 1995. The international workshop on establishment of microbial inocula in soils : cooperative research project on biological resource management of the organization for economic cooperation and development (OECD). Am. J. Altern. Agric. 10:50-73 https://doi.org/10.1017/S0889189300006160
  10. Goldstein, A. H. 1986. Bacterial solubilization of mineral phosphate : Historical perspectives and future prospects. Am. J. Altern. Agric. 1:51-57 https://doi.org/10.1017/S0889189300000886
  11. Hassan, Dar. Gh. 1996. Effects of cadmium and sewage sludge on soil microbial biomass and enzyme activities. Bioresour. Technol. 56:141-145 https://doi.org/10.1016/0960-8524(95)00186-7
  12. Horwath, W. R., and E. A. Paul. 1994. Microbial biomass. P. 753-773. In A. L. Page et al. (ed.) Methods of soil analysis. Part 2. Chemical and microbiological properties. Soil Science Society of America, Madison, WI, USA
  13. Hwangbo, H. 2002. 2-ketogluconic acid production and phosphate solubilization by Enterobacter intennedium. MS Thesis, Chonnam National University, Kwangju, Korea
  14. IFDC, and UNIDO. 1998. Sulfuric and phosphoric acids. p 295-353. In IFDC, and UNIDO. (ed.) Fertilizer manual. Muscle Shoals, AL, USA
  15. Illmer, P., and F. Schinner. 1992. Solubilization of inorganic phosphates by microorganism isolated from forest soils. Soil Biol. Biochem. 24:389-395 https://doi.org/10.1016/0038-0717(92)90199-8
  16. Kim, K. Y., D. Jordan, and H. B. Krishnan. 1997. Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol. Lett. 153:273-277 https://doi.org/10.1016/S0378-1097(97)00246-2
  17. Kim, K. Y., D. Jordan, and G. A. Mcdonald. 1998. Entemhacter aRRlomerans, phosphate solubilizing bacteria, and microbial activity in soils: Effect of carbon sources. Soil Biol. Biochem. 30:995-1003 https://doi.org/10.1016/S0038-0717(98)00007-8
  18. Kim, K. Y., H. Hwangbo, Y. W. Kim, H. J. Kim, K. H. Park, Y. C. Kim, and K. Y. Seong. 2002. Organic acid production and phosphate solubilization by Enterobacter intermedium 60-2G. Korean J. Soil Sci. Fert. 35:59-67
  19. Leinhos, V., and O. Vacek. 1994. Biosynthesis of auxins by phosphate solubilizing rhizobacteria from wheat (Triticum aestivum) and rye (Seeale cereale). Microbiol. Res. 149:31-35 https://doi.org/10.1016/S0944-5013(11)80132-1
  20. Leinhos, V. 1994. Effects of pH and glucose on auxin production of phosphate solubilizing rhizobacteria in vitro. Microhiol. Res. 149: 135-138 https://doi.org/10.1016/S0944-5013(11)80108-4
  21. Lee, S. K. 1983. Effects of rice straw application on the immobilization of applied nitrogen in a submerged soil. J. Korean Soc. Soil Sci. Fert. 16:368-371
  22. Leyval, C., and J. Berthelin. 1989. Inetractions between Lacearia luccara, Agrobacterium radiobacter and beech roots: Influence on P, K, Mg and Fe mobilization from minerals and plant growth. Plant Soil 117: 103-110 https://doi.org/10.1007/BF02206262
  23. Louw, H. A., D. M. Webley. 1959. The bacteriology of the root region of the oat plant grown under controlled pot culture conditions. J. Appl. Bacteriol. 22:216-226 https://doi.org/10.1111/j.1365-2672.1959.tb00154.x
  24. Moghimi, A., M. E. Tate, and J. M. Oades. 1978. Characterization of rhizosphere products especially 2-ketogluconic acid. Soil Biol. Biochem. 10:277-281 https://doi.org/10.1016/0038-0717(78)90022-6
  25. Moghimi, A., and M. E. Tate. 1978. Does 2-ketogluconate chelate calcium in the pH range 2.4 and 6.4? Soil Biol. Biochem. 10:289-292 https://doi.org/10.1016/0038-0717(78)90024-X
  26. Nelson, D. W., and L. E. Sommers. 1982. Total carbon, organic carbon and organic matter. p. 539-580. In A. L. Page et al. (ed.) Methods of soil analysis. Part 2. Chemical and microbiological properties. Soil Science Society of America, Madison, WI, USA
  27. Perucci, P. 1992. Enzyme activity and microbial biomass in a field soil amended with municipal refuse. Biol. Fertil. Soil. 14:54-60 https://doi.org/10.1007/BF00336303
  28. RDA. 2000. Methods of soil and plant analysis. Rural Development Adminictration, Suwon, Korea
  29. Rose, R. E. 1957. Techniques for determining the effect of microorganism on insoluble inorganic phosphates. New Zeal. J. Sci. Technol. 38B:773-780
  30. Sample, E. C., R. J. Soper, and G. J. Racz. 1980. Reaction of phosphate fertilizers in soils. p 263-310. In F. E. Kbasawneh (ed.) The role of phosphorus in agriculture. Soil Science Society of America, Madison, WI, USA
  31. Singh, C. P., and A. Amberger. 1998. Organic acids and phosphorus solubilization in straw composted with rock phosphate. Bioresour. Technol. 63:13-16 https://doi.org/10.1016/S0960-8524(97)00104-1
  32. Sperher, J. I. 1957. Solution of mineral phosphate by soil bacteria. Nature 180:994-995 https://doi.org/10.1038/180994a0
  33. Strom, L., A. G. Owen, D. L. Godbold, and D. L. Jones. 2002. Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots. Soil Biol. Biochem. 34:703-710 https://doi.org/10.1016/S0038-0717(01)00235-8
  34. Svitel, J.. and E. Sturdik. 1995. 2-ketogluconic acid production by Acetohacter pasteurianus. Appl. Biochem. Biotech. 53:53-63 https://doi.org/10.1007/BF02783481
  35. Tabatabai, M. A. 1994. Soil enzymes. p. 775-834. In A. L. Page (ed.) Methods of soil analysis. Part 2. Chemical and microbiological properties. Soil Science Society of America, Madison, WI, USA
  36. Taha, S. M., S. A. Z. Mahmoud, A. H. EI-Damaty, and A. M. A. El-Hafez. 1969. Activity of phosphate dissolving bacteria in Egyptian soils, Plant Soil 31: 149-160 https://doi.org/10.1007/BF01373034
  37. Tarafdar, J. C., and A. Jungk. 1987. Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol. Fertil. Soils 3: 199-204 https://doi.org/10.1007/BF00640630
  38. Vassilev, N., M. Toro, M. Vassileva, R Azcon, and J. M, Barea. 1997. Rock phosphate solubilization by immobilized cells of Enterobacter, sp. in fermentation and soil conditions. Bioresour. Technol. 61:29-32 https://doi.org/10.1016/S0960-8524(97)84694-9